

DNA Test Report

Test Date: October 11th, 2023

embk.me/chbloomsburybibbitybobbityboo

BREED ANCESTRY

GENETIC STATS

Predicted adult weight: **6 lbs** Life stage: **Young adult** Based on your dog's date of birth provided.

TEST DETAILS

Kit number: EM-13860996 Swab number: 31220610300043

DNA Test Report

Test Date: October 11th, 2023

embk.me/chbloomsburybibbitybobbityboo

CHIHUAHUA

The world's smallest breed - the Chihuahua makes up for its lack of size with a huge personality. The origin of this popular breed is largely unknown. While the Chihuahua we recognize today was first discovered in Mexico in the mid 1800s and taking its name from the Mexican city of Chihuahua, the ancestry of this tiny breed is somewhat of a mystery. The most common theory is the Chihuahua descended from an ancient South American dog called the Techichi, with connections to the Toltec civilization followed by the Aztecs. It is thought the Techichi were seen as mystic and spiritual guides that protected souls on their path to the underworld. Following their colorful history, Chihuahuas made their way to America in the late 19th century. This tiny toy dog was first recognized by the AKC in 1904. A notable feature of the Chihuahua breed is their tendency to shake when cold, excited or scared, providing many sweaterloving dog owners the opportunity to dress up their mini pooch. This fun loving and active breed is certainly people orientated, and often seeks a lot of attention. 20-30 minutes of exercise should suffice for this dog's energy requirements. Despite their miniature frame, the Chihuahua is known to be bold and confident. Their protective nature often sees them get aggressive with other dogs, which can cause problems considering they will almost always be out-sized. Their size also makes this affectionate breed often unsuited to small children who may be too rough for them to play with. A healthy Chihuahua can live to around 18 years, so an owner should be prepared to train this energetic breed to ensure they don't control their lives. Chihuahuas are generally easy to train which is highly recommended. This fun loving dog ranks as the 28th most popular breed.

DNA Test Report

Test Date: October 11th, 2023

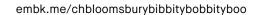
embk.me/chbloomsburybibbitybobbityboo

MATERNAL LINE

Through Cindy's mitochondrial DNA we can trace her mother's ancestry back to where dogs and people first became friends. This map helps you visualize the routes that her ancestors took to your home. Their story is described below the map.

HAPLOGROUP: B1

B1 is the second most common maternal lineage in breeds of European or American origin. It is the female line of the majority of Golden Retrievers, Basset Hounds, and Shih Tzus, and about half of Beagles, Pekingese and Toy Poodles. This lineage is also somewhat common among village dogs that carry distinct ancestry from these breeds. We know this is a result of B1 dogs being common amongst the European dogs that their conquering owners brought around the world, because nowhere on earth is it a very common lineage in village dogs. It even enables us to trace the path of (human) colonization: Because most Bichons are B1 and Bichons are popular in Spanish culture, B1 is now fairly common among village dogs in Latin America.


HAPLOTYPE: B77/B81

Part of the B1 haplogroup, the B77/B81 haplotype occurs most frequently in Shih Tzus, Small Poodles, and American Bullies.

Test Date: October 11th, 2023

embark

RESULT

TRAITS: COAT COLOR

TRAIT

E Locus (MC1R)

The E Locus determines if and where a dog can produce dark (black or brown) hair. Dogs with two copies of the recessive **e** variant do not produce dark hairs and will express a red pigment called pheomelanin over their entire body. The shade of red, which can range from a deep copper to white, depends on other genetic factors, including the Intensity loci. In addition to determining if a dog can develop dark hairs, the E Locus can give a dog a black "mask" or "widow's peak" unless the dog has overriding coat color genetic factors.

Dogs with one or two copies of the **E**^m variant may have a melanistic mask (dark facial hair as commonly seen in the German Shepherd Dog and Pug). In the absence of **E**^m, dogs with the **E**^g variant can have a "grizzle" phenotype (darker color on the head and top with a melanistic "widow's peak" and a lighter underside, commonly seen in the Afghan Hound and Borzoi and also referred to as "domino"). In the absence of both **E**^m and **E** variants, dogs with the **E**^a or **E**^h variants can express the grizzle phenotype. Additionally, a dog with any combination of two of the **E**^g, **E**^a, or **E**^h variants (example: **E**^g**E**^a) is also expected to express the grizzle phenotype.

No dark mask or grizzle (Ee)

K Locus (CBD103)

The K Locus K^B allele "overrides" the A Locus, meaning that it prevents the A Locus genotype from affecting coat color. For this reason, the K^B allele is referred to as the "dominant black" allele. As a result, dogs with at least one K^B allele will usually have solid black or brown coats (or red/cream coats if they are **ee** at the E Locus) regardless of their genotype at the A Locus, although several other genes could impact the dog's coat and cause other patterns, such as white spotting. Dogs with the $k^{y}k^{y}$ genotype will show a coat color pattern based on the genotype they have at the A Locus. Dogs who test as $K^{B}k^{y}$ may be brindle rather than black or brown.

More likely to have a patterned haircoat (k^yk^y)

DNA Test Report

Test Date: October 11th, 2023

embk.me/chbloomsburybibbitybobbityboo

TRAITS: COAT COLOR (CONTINUED)

TRAIT

Intensity Loci

Areas of a dog's coat where dark (black or brown) pigment is not expressed either contain red/yellow pigment, or no pigment at all. Five locations across five chromosomes explain approximately 70% of red pigmentation "intensity" variation across all dogs. Dogs with a result of **Intense Red Pigmentation** will likely have deep red hair like an Irish Setter or "apricot" hair like some Poodles, dogs with a result of **Intermediate Red Pigmentation** will likely have tan or yellow hair like a Soft-Coated Wheaten Terrier, and dogs with **Dilute Red Pigmentation** will likely have cream or white hair like a Samoyed. Because the mutations we test may not directly cause differences in red pigmentation intensity, we consider this to be a linkage test.

Any light hair likely yellow or tan (Intermediate Red Pigmentation)

RESULT

A Locus (ASIP)

The A Locus controls switching between black and red pigment in hair cells, but it will only be expressed in dogs that are not **ee** at the E Locus and are **k**^y**k**^y at the K Locus. Sable (also called "Fawn") dogs have a mostly or entirely red coat with some interspersed black hairs. Agouti (also called "Wolf Sable") dogs have red hairs with black tips, mostly on their head and back. Black and tan dogs are mostly black or brown with lighter patches on their cheeks, eyebrows, chest, and legs. Recessive black dogs have solid-colored black or brown coats.

Fawn Sable coat color pattern (a^ya^y)

D Locus (MLPH)

The D locus result that we report is determined by three different genetic variants that can work together to cause diluted pigmentation. These are the common **d** allele, also known as "**d1**", and the less common alleles known as "**d2**" and "**d3**". Dogs with two **d** alleles, regardless of which variant, will have all black pigment lightened ("diluted") to gray, or brown pigment lightened to lighter brown in their hair, skin, and sometimes eyes. There are many breed-specific names for these dilute colors, such as "blue", "charcoal", "fawn", "silver", and "Isabella". Note that in certain breeds, dilute dogs have a higher incidence of Color Dilution Alopecia. Dogs with one **d** allele will not be dilute, but can pass the **d** allele on to their puppies.

Dark areas of hair and skin are not lightened (DD)

DNA Test Report

Test Date: October 11th, 2023

embk.me/chbloomsburybibbitybobbityboo

TRAITS: COAT COLOR (CONTINUED)

ocoa (HPS3)	
ogs with the coco genotype will produce dark brown pigment instead of black in both their hair and skin. ogs with the Nco genotype will produce black pigment, but can pass the co allele on to their puppies. ogs that have the coco genotype as well as the bb genotype at the B locus are generally a lighter brown han dogs that have the Bb or BB genotypes at the B locus.	No co alleles, not expressed (NN)
Locus (TYRP1)	
ogs with two copies of the b allele produce brown pigment instead of black in both their hair and skin. ogs with one copy of the b allele will produce black pigment, but can pass the b allele on to their puppies Locus ee dogs that carry two b alleles will have red or cream coats, but have brown noses, eye rims, and potpads (sometimes referred to as "Dudley Nose" in Labrador Retrievers). "Liver" or "chocolate" is the referred color term for brown in most breeds; in the Doberman Pinscher it is referred to as "red".	skin (BR)
addle Tan (RALY)	
he "Saddle Tan" pattern causes the black hairs to recede into a "saddle" shape on the back, leaving a tan ace, legs, and belly, as a dog ages. The Saddle Tan pattern is characteristic of breeds like the Corgi, eagle, and German Shepherd. Dogs that have the II genotype at this locus are more likely to be mostly lack with tan points on the eyebrows, muzzle, and legs as commonly seen in the Doberman Pinscher and ne Rottweiler. This gene modifies the A Locus a ^t allele, so dogs that do not express a ^t are not influenced y this gene.	Not expressed (NN)

The S Locus determines white spotting and pigment distribution. MITF controls where pigment is produced, and an insertion in the MITF gene causes a loss of pigment in the coat and skin, resulting in white hair and/or pink skin. Dogs with two copies of this variant will likely have breed-dependent white patterning, with a nearly white, parti, or piebald coat. Dogs with one copy of this variant will have more limited white spotting and may be considered flash, parti or piebald. This MITF variant does not explain all white spotting patterns in dogs and other variants are currently being researched. Some dogs may have small amounts of white on the paws, chest, face, or tail regardless of their S Locus genotype.

Likely solid colored, but may have small amounts of white (Ssp)

DNA Test Report

Test Date: October 11th, 2023

embk.me/chbloomsburybibbitybobbityboo

TRAITS: COAT COLOR (CONTINUED)

TRAIT

M Locus (PMEL)

Merle coat patterning is common to several dog breeds including the Australian Shepherd, Catahoula Leopard Dog, and Shetland Sheepdog, among many others. Merle arises from an unstable SINE insertion (which we term the "M*" allele) that disrupts activity of the pigmentary gene PMEL, leading to mottled or patchy coat color. Dogs with an **M*m** result are likely to be phenotypically merle or could be "nonexpressing" merle, meaning that the merle pattern is very subtle or not at all evident in their coat. Dogs with an **M*M*** result are likely to be phenotypically merle. Dogs with an **mm** result have no merle alleles and are unlikely to have a merle coat pattern.

Note that Embark does not currently distinguish between the recently described cryptic, atypical, atypical+, classic, and harlequin merle alleles. Our merle test only detects the presence, but not the length of the SINE insertion. We do not recommend making breeding decisions on this result alone. Please pursue further testing for allelic distinction prior to breeding decisions.

R Locus (USH2A)

The R Locus regulates the presence or absence of the roan coat color pattern. Partial duplication of the USH2A gene is strongly associated with this coat pattern. Dogs with at least one **R** allele will likely have roaning on otherwise uniformly unpigmented white areas. Roan appears in white areas controlled by the S Locus but not in other white or cream areas created by other loci, such as the E Locus with **ee** along with Dilute Red Pigmentation by I Locus (for example, in Samoyeds). Mechanisms for controlling the extent of roaning are currently unknown, and roaning can appear in a uniform or non-uniform pattern. Further, non-uniform roaning may appear as ticked, and not obviously roan. The roan pattern can appear with or without ticking.

Likely no impact on coat pattern (rr)

No merle alleles (mm)

H Locus (Harlequin)

This pattern is recognized in Great Danes and causes dogs to have a white coat with patches of darker pigment. A dog with an **Hh** result will be harlequin if they are also **M*m** or **M*M*** at the M Locus and are not **ee** at the E locus. Dogs with a result of **hh** will not be harlequin. This trait is thought to be homozygous lethal; a living dog with an **HH** genotype has never been found.

No harlequin alleles (hh)

RESULT

DNA Test Report

Test Date: October 11th, 2023

embk.me/chbloomsburybibbitybobbityboo

TRAITS: OTHER COAT TRAITS

TRAIT

Furnishings (RSP02)

Dogs with one or two copies of the **F** allele have "furnishings": the mustache, beard, and eyebrows characteristic of breeds like the Schnauzer, Scottish Terrier, and Wire Haired Dachshund. A dog with two **I** alleles will not have furnishings, which is sometimes called an "improper coat" in breeds where furnishings are part of the breed standard. The mutation is a genetic insertion which we measure indirectly using a linkage test highly correlated with the insertion.

Likely unfurnished (no mustache, beard, and/or eyebrows) (II)

RESULT

DNA Test Report

Test Date: October 11th, 2023

embk.me/chbloomsburybibbitybobbityboo

RESULT

TRAITS: OTHER COAT TRAITS (CONTINUED)

TRAIT

Coat Length (FGF5)

The FGF5 gene affects hair length in many species, including cats, dogs, mice, and humans. In dogs, an **Lh** allele confers a long, silky hair coat across many breeds, including Yorkshire Terriers, Cocker Spaniels, and Golden Retrievers, while the **Sh** allele causes a shorter coat, as seen in the Boxer or the American Staffordshire Terrier. In certain breeds, such as the Pembroke Welsh Corgi and French Bulldog, the long haircoat is described as "fluffy". The coat length determined by FGF5, as reported by us, is influenced by four genetic variants that work together to promote long hair.

The most common of these is the **Lh1** variant (G/T, CanFam3.1, chr32, g.4509367) and the less common ones are **Lh2** (C/T, CanFam3.1, chr32, g.4528639), **Lh3** (16bp deletion, CanFam3.1, chr32, g.4528616), and **Lh4** (GG insertion, CanFam3.1, chr32, g.4528621). The FGF5_Lh1 variant is found across many dog breeds. The less common alleles, FGF5_Lh2, have been found in the Akita, Samoyed, and Siberian Husky, FGF5_Lh3 have been found in the Eurasier, and FGF5_Lh4 have been found in the Afghan Hound, Eurasier, and French Bulldog.

The **Lh** alleles have a recessive mode of inheritance, meaning that two copies of the **Lh** alleles are required to have long hair. The presence of two Lh alleles at any of these FGF5 loci is expected to result in long hair. One copy each of **Lh1** and **Lh2** have been found in Samoyeds, one copy each of **Lh1** and **Lh3** have been found in Eurasiers, and one copy each of **Lh1** and **Lh4** have been found in the Afghan Hounds and Eurasiers.

Interestingly, the Lh3 variant, a 16 base pair deletion, encompasses the Lh4 variant (GG insertion). The presence of one or two copies of Lh3 influences the outcome at the Lh4 locus. When two copies of Lh3 are present, there will be no reportable result for the FGF5_Lh4 locus. With one copy of Lh3, Lh4 can have either one copy of the variant allele or the normal allele. The overall FGF5 result remains unaffected by this.

Likely short or midlength coat (ShLh)

DNA Test Report Test Date: October 11th, 2023 embk.me/chbloomsburybibbitybobbityboo

TRAITS: OTHER COAT TRAITS (CONTINUED)

TRAIT

Shedding (MC5R)

Dogs with at least one copy of the ancestral C allele, like many Labradors and German Shepherd Dogs, are heavy or seasonal shedders, while those with two copies of the T allele, including many Boxers, Shih Tzus and Chihuahuas, tend to be lighter shedders. Dogs with furnished/wire-haired coats caused by RSPO2 (the furnishings gene) tend to be low shedders regardless of their genotype at this gene.

Likely heavy/seasonal shedding (CT)

RESULT

Coat Texture (KRT71)

Dogs with a long coat and at least one copy of the T allele have a wavy or curly coat characteristic of Poodles and Bichon Frises. Dogs with two copies of the ancestral C allele are likely to have a straight coat, but there are other factors that can cause a curly coat, for example if they at least one F allele for the Furnishings (RSPO2) gene then they are likely to have a curly coat. Dogs with short coats may carry one or two copies of the T allele but still have straight coats.

Likely straight coat (CC)

Hairlessness (FOXI3)

A duplication in the FOXI3 gene causes hairlessness over most of the body as well as changes in tooth shape and number. This mutation occurs in Peruvian Inca Orchid, Xoloitzcuintli (Mexican Hairless), and Very unlikely to be Chinese Crested (other hairless breeds have different mutations). Dogs with the NDup genotype are likely to be hairless while dogs with the NN genotype are likely to have a normal coat. The DupDup genotype has never been observed, suggesting that dogs with that genotype cannot survive to birth. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

hairless (NN)

Hairlessness (SGK3)

Hairlessness in the American Hairless Terrier arises from a mutation in the SGK3 gene. Dogs with the DD result are likely to be hairless. Dogs with the ND genotype will have a normal coat, but can pass the D variant on to their offspring.

Very unlikely to be hairless (NN)

DNA Test Report

Test Date: October 11th, 2023

embk.me/chbloomsburybibbitybobbityboo

TRAITS: OTHER COAT TRAITS (CONTINUED)

TRAIT

Oculocutaneous Albinism Type 2 (SLC45A2)

Dogs with two copies **DD** of this deletion in the SLC45A2 gene have oculocutaneous albinism (OCA), also known as Doberman Z Factor Albinism, a recessive condition characterized by severely reduced or absent pigment in the eyes, skin, and hair. Affected dogs sometimes suffer from vision problems due to lack of eye pigment (which helps direct and absorb ambient light) and are prone to sunburn. Dogs with a single copy of the deletion **ND** will not be affected but can pass the mutation on to their offspring. This particular mutation can be traced back to a single white Doberman Pinscher born in 1976, and it has only been observed in dogs descended from this individual. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

Likely not albino (NN)

RESULT

DNA Test Report

Test Date: October 11th, 2023

TRAITS: OTHER BODY FEATURES

TRAIT

Muzzle Length (BMP3)

Dogs in medium-length muzzle (mesocephalic) breeds like Staffordshire Terriers and Labradors, and long muzzle (dolichocephalic) breeds like Whippet and Collie have one, or more commonly two, copies of the ancestral **C** allele. Dogs in many short-length muzzle (brachycephalic) breeds such as the English Bulldog, Pug, and Pekingese have two copies of the derived **A** allele. At least five different genes affect muzzle length in dogs, with BMP3 being the only one with a known causal mutation. For example, the skull shape of some breeds, including the dolichocephalic Scottish Terrier or the brachycephalic Japanese Chin, appear to be caused by other genes. Thus, dogs may have short or long muzzles due to other genetic factors that are not yet known to science.

Tail Length (T)

Whereas most dogs have two **C** alleles and a long tail, dogs with one **G** allele are likely to have a bobtail, which is an unusually short or absent tail. This mutation causes natural bobtail in many breeds including the Pembroke Welsh Corgi, the Australian Shepherd, and the Brittany Spaniel. Dogs with **GG** genotypes have not been observed, suggesting that dogs with the **GG** genotype do not survive to birth. Please note that this mutation does not explain every natural bobtail! While certain lineages of Boston Terrier, English Bulldog, Rottweiler, Miniature Schnauzer, Cavalier King Charles Spaniel, and Parson Russell Terrier, and Dobermans are born with a natural bobtail, these breeds do not have this mutation. This suggests that other unknown genetic mutations can also lead to a natural bobtail.

Hind Dewclaws (LMBR1)

Common in certain breeds such as the Saint Bernard, hind dewclaws are extra, nonfunctional digits located midway between a dog's paw and hock. Dogs with at least one copy of the **T** allele have about a 50% chance of having hind dewclaws. Note that other (currently unknown to science) mutations can also cause hind dewclaws, so some **CC** or **TC** dogs will have hind dewclaws.

Likely medium or long muzzle (AC)

RESULT

Likely normal-length tail (CC)

Likely to have hind dew claws (CT)

DNA Test Report

Test Date: October 11th, 2023

embk.me/chbloomsburybibbitybobbityboo

RESULT

TRAITS: OTHER BODY FEATURES (CONTINUED)

TRAIT

Blue Eye Color (ALX4)

Embark researchers discovered this large duplication associated with blue eyes in Arctic breeds like Siberian Husky as well as tri-colored (non-merle) Australian Shepherds. Dogs with at least one copy of the duplication (**Dup**) are more likely to have at least one blue eye. Some dogs with the duplication may have only one blue eye (complete heterochromia) or may not have blue eyes at all; nevertheless, they can still pass the duplication and the trait to their offspring. **NN** dogs do not carry this duplication, but may have blue eyes due to other factors, such as merle. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

Back Muscling & Bulk, Large Breed (ACSL4)

The **T** allele is associated with heavy muscling along the back and trunk in characteristically "bulky" largebreed dogs including the Saint Bernard, Bernese Mountain Dog, Greater Swiss Mountain Dog, and Rottweiler. The "bulky" **T** allele is absent from leaner shaped large breed dogs like the Great Dane, Irish Wolfhound, and Scottish Deerhound, which are fixed for the ancestral **C** allele. Note that this mutation does not seem to affect muscling in small or even mid-sized dog breeds with notable back muscling, including the American Staffordshire Terrier, Boston Terrier, and the English Bulldog.

Likely normal muscling (CC)

Less likely to have blue

eyes (NN)

Registration:

DNA Test Report	Test Date: October 11th, 2023	embk.me/chbloomsburybibbitybobbityboo
TRAITS: BODY SIZE		
TRAIT		RESULT
Body Size (IGF1)		Smaller (II)
The I allele is associated with smaller body size.		
Body Size (IGFR1)		Larger (GG)
The A allele is associated with smaller body size.		
Body Size (STC2)		Smaller (AA)
The A allele is associated with smaller body size.		Sinalier (MA)
Body Size (GHR - E191K)		Smaller (AA)
The A allele is associated with smaller body size.		Sindher (AA)
Body Size (GHR - P177L)		Smaller (TT)
The T allele is associated with smaller body size.		

DNA Test Report	Test Date: October 11th, 2023	embk.me/chblo	oomsburybibbitybobbitybo
TRAITS: PERFORMANC	E		
TRAIT			RESULT
Altitude Adaptation (EPAS1)			
found at high elevations. Dogs with	pecially tolerant of low oxygen environments (hypox at least one A allele are less susceptible to "altitude breeds from high altitude areas such as the Tibetan	sickness." This	Normal altitude tolerance (GG)
Appetite (POMC)			
This mutation in the POMC gene is	found primarily in Labrador and Flat Coated Retriever	rs. Compared to	
dogs with no copies of the mutation	n (NN), dogs with one (ND) or two (DD) copies of the	mutation are more	Normal food
, ,	which can cause them to eat excessively, have highe	,	motivation (NN)
	besity. Read more about the genetics of POMC, and		
• •	oost (https://embarkvet.com/resources/blog/pomc-	dogs/). We	
measure this result using a linkage	iesi.		

DNA Test Report

Test Date: October 11th, 2023

embk.me/chbloomsburybibbitybobbityboo

HEALTH REPORT

How to interpret Cindy's genetic health results:

If Cindy inherited any of the variants that we tested, they will be listed at the top of the Health Report section, along with a description of how to interpret this result. We also include all of the variants that we tested Cindy for that we did not detect the risk variant for.

A genetic test is not a diagnosis

This genetic test does not diagnose a disease. Please talk to your vet about your dog's genetic results, or if you think that your pet may have a health condition or disease.

Summary

Of the 255 genetic health risks we analyzed, we found 2 results that you should learn about.

Notable results (2)

ALT Activity

Proportionate Dwarfism

Clear results

Breed-relevant (6)

Other (247)

DNA Test Report	Test Date: October 11th, 2023	embk.me/chbloomsburybibbitybobbityboo

BREED-RELEVANT RESULTS

Research studies indicate that these results are more relevant to dogs like Cindy, and may influence her chances of developing certain health conditions.

Congenital Cornification Disorder (NSDHL, Chihuahua Variant)	Clear
Intervertebral Disc Disease (Type I) (FGF4 retrogene - CFA12)	Clear
Neuronal Ceroid Lipofuscinosis 7, NCL 7 (MFSD8, Chihuahua and Chinese Crested Variant)	Clear
Progressive Retinal Atrophy, crd4/cord1 (RPGRIP1)	Clear
Progressive Retinal Atrophy, prcd (PRCD Exon 1)	Clear
Spinocerebellar Ataxia with Myokymia and/or Seizures (KCNJ10)	Clear
Registration: Canadian Kennel Club (CKC) JL4175099	

Registration: Canadian Kennel Club (CKC) JL4175099

Kembark

DNA Test Report	Test Date: October 11th, 2023	embk.me/chbloomsburybibbitybobbityboo

OTHER RESULTS

Research has not yet linked these conditions to dogs with similar breeds to Cindy. Review any increased risk or notable results to understand her potential risk and recommendations.

O ALT Activity (GPT)	Notable
Proportionate Dwarfism (GH1 Exon 5, Chihuahua Variant)	Notable
2-DHA Kidney & Bladder Stones (APRT)	Clear
Acral Mutilation Syndrome (GDNF-AS, Spaniel and Pointer Variant)	Clear
Alaskan Husky Encephalopathy (SLC19A3)	Clear
Alaskan Malamute Polyneuropathy, AMPN (NDRG1 SNP)	Clear
Alexander Disease (GFAP)	Clear
Anhidrotic Ectodermal Dysplasia (EDA Intron 8)	Clear
Autosomal Dominant Progressive Retinal Atrophy (RHO)	Clear
Bald Thigh Syndrome (IGFBP5)	Clear
Bernard-Soulier Syndrome, BSS (GP9, Cocker Spaniel Variant)	Clear
Bully Whippet Syndrome (MSTN)	Clear
Canine Elliptocytosis (SPTB Exon 30)	Clear
Canine Fucosidosis (FUCA1)	Clear
Canine Leukocyte Adhesion Deficiency Type I, CLAD I (ITGB2, Setter Variant)	Clear
Canine Leukocyte Adhesion Deficiency Type III, CLAD III (FERMT3, German Shepherd Variant)	Clear
Canine Multifocal Retinopathy, cmr1 (BEST1 Exon 2)	Clear
Canine Multifocal Retinopathy, cmr2 (BEST1 Exon 5, Coton de Tulear Variant)	Clear

DNA Test Report	Test Date: October 11th, 2023	embk.me/chbloomsburybibbityb	obbityboo
OTHER RESULTS			
 Canine Multifocal Retinopathy, cmr3 (BEST Lapponian Herder Variant) 	1 Exon 10 Deletion, Finnish and Swedish	Lapphund,	Clear
Canine Multiple System Degeneration (SEF	RAC1 Exon 4, Chinese Crested Variant)		Clear
O Canine Multiple System Degeneration (SEF	RAC1 Exon 15, Kerry Blue Terrier Variant)		Clear
Cardiomyopathy and Juvenile Mortality (YA)	RS2)		Clear
O Centronuclear Myopathy, CNM (PTPLA)			Clear
🔗 Cerebellar Hypoplasia (VLDLR, Eurasier Var	iant)		Clear
Ochondrodystrophy (ITGA10, Norwegian Elkl	hound and Karelian Bear Dog Variant)		Clear
Cleft Lip and/or Cleft Palate (ADAMTS20, N	ova Scotia Duck Tolling Retriever Variant)		Clear
Cleft Palate, CP1 (DLX6 intron 2, Nova Scot	ia Duck Tolling Retriever Variant)		Clear
Ocobalamin Malabsorption (CUBN Exon 8, B	eagle Variant)		Clear
Ocobalamin Malabsorption (CUBN Exon 53,	Border Collie Variant)		Clear
Ocollie Eye Anomaly (NHEJ1)			Clear
Omplement 3 Deficiency, C3 Deficiency (C	23)		Clear
Ongenital Hypothyroidism (TPO, Rat, Toy, I	Hairless Terrier Variant)		Clear
Orngenital Hypothyroidism (TPO, Tenterfie	ld Terrier Variant)		Clear
Ongenital Hypothyroidism with Goiter (TP	O Intron 13, French Bulldog Variant)		Clear
Orngenital Hypothyroidism with Goiter (SL	C5A5, Shih Tzu Variant)		Clear
Ongenital Macrothrombocytopenia (TUBE	31 Exon 1, Cairn and Norfolk Terrier Variant)	Clear

Registration: Canadian Kennel Club (CKC) JL4175099

DNA Test Report	Test Date: October 11th, 2023	embk.me/chbloomsburybibbitybobbity	tyboo
OTHER RESULTS			
Congenital Myasthenic Syndrome, CMS (CO	DLQ, Labrador Retriever Variant)	Clea	ar
Congenital Myasthenic Syndrome, CMS (CO	DLQ, Golden Retriever Variant)	Clea	ar
Congenital Myasthenic Syndrome, CMS (CH	HAT, Old Danish Pointing Dog Variant)	Clea	ar
Orngenital Myasthenic Syndrome, CMS (CH	HRNE, Jack Russell Terrier Variant)	Clea	ar
Orgenital Stationary Night Blindness (LRI	T3, Beagle Variant)	Clea	ar
Orngenital Stationary Night Blindness (RPI	E65, Briard Variant)	Clea	ar
Craniomandibular Osteopathy, CMO (SLC37	7A2)	Clea	ar
Craniomandibular Osteopathy, CMO (SLC37	A2 Intron 16, Basset Hound Variant)	Clea	ar
🔗 Cystinuria Type I-A (SLC3A1, Newfoundland	l Variant)	Clea	ar
🔗 Cystinuria Type II-A (SLC3A1, Australian Ca	ttle Dog Variant)	Clea	ar
🔗 Cystinuria Type II-B (SLC7A9, Miniature Pin	scher Variant)	Clea	ar
O Day Blindness (CNGB3 Deletion, Alaskan M	alamute Variant)	Clea	ar
Oay Blindness (CNGA3 Exon 7, German She	pherd Variant)	Clea	ar
O Day Blindness (CNGA3 Exon 7, Labrador Ref	triever Variant)	Clea	ar
Day Blindness (CNGB3 Exon 6, German Sho	orthaired Pointer Variant)	Clea	ar
O Deafness and Vestibular Syndrome of Dobe	ermans, DVDob, DINGS (MYO7A)	Clea	ar
O Degenerative Myelopathy, DM (SOD1A)		Clea	ar
Ommyelinating Polyneuropathy (SBF2/MTR	M13)	Clea	3r

Registration: Canadian Kennel Club (CKC) JL4175099

DNA Test Report	Test Date: October 11th, 2023 embk.me/c	chbloomsburybibbitybobbitybo
OTHER RESULTS		
Oental-Skeletal-Retinal Anomaly	y (MIA3, Cane Corso Variant)	Clear
Ø Diffuse Cystic Renal Dysplasia a	nd Hepatic Fibrosis (INPP5E Intron 9, Norwich Terrier Variant)	Clear
Oilated Cardiomyopathy, DCM (R	BM20, Schnauzer Variant)	Clear
Oilated Cardiomyopathy, DCM1 (PDK4, Doberman Pinscher Variant 1)	Clear
Oilated Cardiomyopathy, DCM2 (TTN, Doberman Pinscher Variant 2)	Clear
O Disproportionate Dwarfism (PRK	G2, Dogo Argentino Variant)	Clear
Ory Eye Curly Coat Syndrome (FA	AM83H Exon 5)	Clear
Oystrophic Epidermolysis Bullos	a (COL7A1, Central Asian Shepherd Dog Variant)	Clear
Oystrophic Epidermolysis Bullos	a (COL7A1, Golden Retriever Variant)	Clear
Early Bilateral Deafness (LOXHD	1 Exon 38, Rottweiler Variant)	Clear
Early Onset Adult Deafness, EOA	D (EPS8L2 Deletion, Rhodesian Ridgeback Variant)	Clear
Early Onset Cerebellar Ataxia (Sl	EL1L, Finnish Hound Variant)	Clear
Ehlers Danlos (ADAMTS2, Dober	man Pinscher Variant)	Clear
S Enamel Hypoplasia (ENAM Delet	ion, Italian Greyhound Variant)	Clear
Enamel Hypoplasia (ENAM SNP,	Parson Russell Terrier Variant)	Clear
Episodic Falling Syndrome (BCA	N)	Clear
Exercise-Induced Collapse, EIC	(DNM1)	Clear
Sactor VII Deficiency (F7 Exon 5)		Clear
Registration: Canadian Kennel Club (CKC) JL417	5099	

Registration: Canadian Kennel Club (CKC) JL4175099

DNA Test Report	Test Date: October 11th, 2023	embk.me/chbloomsburybibbitybobbitybo
OTHER RESULTS		
Sactor XI Deficiency (F11 Exon 7, Kerry Blue	Terrier Variant)	Clear
Samilial Nephropathy (COL4A4 Exon 3, Cock	ker Spaniel Variant)	Clear
Samilial Nephropathy (COL4A4 Exon 30, Eng	glish Springer Spaniel Variant)	Clear
🧭 Fanconi Syndrome (FAN1, Basenji Variant)		Clear
Setal-Onset Neonatal Neuroaxonal Dystrop	hy (MFN2, Giant Schnauzer Variant)	Clear
Glanzmann's Thrombasthenia Type I (ITGA2	B Exon 13, Great Pyrenees Variant)	Clear
Glanzmann's Thrombasthenia Type I (ITGA2	B Exon 12, Otterhound Variant)	Clear
Globoid Cell Leukodystrophy, Krabbe diseas	se (GALC Exon 5, Terrier Variant)	Clear
Glycogen Storage Disease Type IA, Von Gier	rke Disease, GSD IA (G6PC, Maltese Varia	nt) Clear
Glycogen Storage Disease Type IIIA, GSD III	A (AGL, Curly Coated Retriever Variant)	Clear
Glycogen storage disease Type VII, Phosph and English Springer Spaniel Variant)	ofructokinase Deficiency, PFK Deficiency	(PFKM, Whippet Clear
Glycogen storage disease Type VII, Phosph Wachtelhund Variant)	ofructokinase Deficiency, PFK Deficiency	(PFKM, Clear
GM1 Gangliosidosis (GLB1 Exon 2, Portugue	ese Water Dog Variant)	Clear
🧭 GM1 Gangliosidosis (GLB1 Exon 15, Shiba In	u Variant)	Clear
🧭 GM1 Gangliosidosis (GLB1 Exon 15, Alaskan	Husky Variant)	Clear
GM2 Gangliosidosis (HEXA, Japanese Chin	Variant)	Clear
GM2 Gangliosidosis (HEXB, Poodle Variant)		Clear
Golden Retriever Progressive Retinal Atroph	hy 1, GR-PRA1 (SLC4A3)	Clear

DNA Test Report	Test Date: October 11th, 2023 em	nbk.me/chbloomsburybibbitybobbityboo
OTHER RESULTS		
Golden Retriever Progressive Retina	al Atrophy 2, GR-PRA2 (TTC8)	Clear
Goniodysgenesis and Glaucoma, Per	ctinate Ligament Dysplasia, PLD (OLFM3)	Clear
Hemophilia A (F8 Exon 11, German S	hepherd Variant 1)	Clear
🔗 Hemophilia A (F8 Exon 1, German Sh	nepherd Variant 2)	Clear
Hemophilia A (F8 Exon 10, Boxer Var	iant)	Clear
Hemophilia B (F9 Exon 7, Terrier Vari	iant)	Clear
🔗 Hemophilia B (F9 Exon 7, Rhodesian	Ridgeback Variant)	Clear
🔗 Hereditary Ataxia, Cerebellar Degene	eration (RAB24, Old English Sheepdog and Gordon Se	etter Variant) Clear
Hereditary Cataracts (HSF4 Exon 9, A	Australian Shepherd Variant)	Clear
Hereditary Footpad Hyperkeratosis ((FAM83G, Terrier and Kromfohrlander Variant)	Clear
Hereditary Footpad Hyperkeratosis ((DSG1, Rottweiler Variant)	Clear
Hereditary Nasal Parakeratosis (SUV	/39H2 Intron 4, Greyhound Variant)	Clear
Hereditary Nasal Parakeratosis, HNP	PK (SUV39H2)	Clear
Hereditary Vitamin D-Resistant Rick	ets (VDR)	Clear
🔗 Hypocatalasia, Acatalasemia (CAT)		Clear
Hypomyelination and Tremors (FNIP	2, Weimaraner Variant)	Clear
🔗 Hypophosphatasia (ALPL Exon 9, Ka	relian Bear Dog Variant)	Clear
🔗 Ichthyosis (NIPAL4, American Bulldo	og Variant)	Clear
Registration: Canadian Kennel Club (CKC) JL4175099	9 Xembark	

DNA Test Report	Test Date: October 11th, 2023	embk.me/chbloomsburybibbitybol	bbityboo
OTHER RESULTS			
Ichthyosis (ASPRV1 Exon 2, German Sheph	erd Variant)	(Clear
Ichthyosis (SLC27A4, Great Dane Variant)		(Clear
Ichthyosis, Epidermolytic Hyperkeratosis (H	KRT10, Terrier Variant)	(Clear
O Ichthyosis, ICH1 (PNPLA1, Golden Retriever	Variant)	(Clear
Inflammatory Myopathy (SLC25A12)		(Clear
Inherited Myopathy of Great Danes (BIN1)		(Clear
Inherited Selected Cobalamin Malabsorptic	on with Proteinuria (CUBN, Komondor Var	iant) (Clear
Intestinal Lipid Malabsorption (ACSL5, Aust	tralian Kelpie)	(Clear
🧭 Junctional Epidermolysis Bullosa (LAMA3 E	xon 66, Australian Cattle Dog Variant)	(Clear
🧭 Junctional Epidermolysis Bullosa (LAMB3 E	xon 11, Australian Shepherd Variant)	(Clear
Juvenile Epilepsy (LGI2)		(Clear
Juvenile Laryngeal Paralysis and Polyneuro	pathy (RAB3GAP1, Rottweiler Variant)	(Clear
Juvenile Myoclonic Epilepsy (DIRAS1)		(Clear
L-2-Hydroxyglutaricaciduria, L2HGA (L2HGE	DH, Staffordshire Bull Terrier Variant)	(Clear
Lagotto Storage Disease (ATG4D)		(Clear
Laryngeal Paralysis (RAPGEF6, Miniature B	ull Terrier Variant)	(Clear
Late Onset Spinocerebellar Ataxia (CAPN1)		(Clear
Zate-Onset Neuronal Ceroid Lipofuscinosis	s, NCL 12 (ATP13A2, Australian Cattle Dog	Variant) (Clear

Registration: Canadian Kennel Club (CKC) JL4175099

DNA Test Report	Test Date: October 11th, 2023	embk.me/chbloomsburybibbitybobbityboo
OTHER RESULTS		
Leonberger Polyneuropathy 1 (LPN1, ARHGI	EF10)	Clear
Leonberger Polyneuropathy 2 (GJA9)		Clear
Lethal Acrodermatitis, LAD (MKLN1)		Clear
Leukodystrophy (TSEN54 Exon 5, Standard	Schnauzer Variant)	Clear
⊘ Ligneous Membranitis, LM (PLG)		Clear
SGCD, Bos	ston Terrier Variant)	Clear
SGCA Limb-Girdle Muscular Dystrophy 2D (SGCA	Exon 3, Miniature Dachshund Variant)	Clear
O Long QT Syndrome (KCNQ1)		Clear
Sundehund Syndrome (LEPREL1)		Clear
Macular Corneal Dystrophy, MCD (CHST6)		Clear
Malignant Hyperthermia (RYR1)		Clear
May-Hegglin Anomaly (MYH9)		Clear
Methemoglobinemia (CYB5R3, Pit Bull Terri	er Variant)	Clear
Methemoglobinemia (CYB5R3)		Clear
Microphthalmia (RBP4 Exon 2, Soft Coated	Wheaten Terrier Variant)	Clear
Mucopolysaccharidosis IIIB, Sanfilippo Syn	drome Type B, MPS IIIB (NAGLU, Schipper	ke Variant) Clear
 Mucopolysaccharidosis Type IIIA, Sanfilippo Variant) 	o Syndrome Type A, MPS IIIA (SGSH Exon	6, Dachshund Clear
Mucopolysaccharidosis Type IIIA, Sanfilippo Huntaway Variant)	o Syndrome Type A, MPS IIIA (SGSH Exon	6, New Zealand Clear

Registration: Canadian Kennel Club (CKC) JL4175099

DNA Test Report	Test Date: October 11th, 2023	embk.me/chbloomsburybibbityl	oobbityboo
OTHER RESULTS			
 Mucopolysaccharidosis Type VI, Maroteaux Variant) 	-Lamy Syndrome, MPS VI (ARSB Exon 5, M	Miniature Pinscher	Clear
Mucopolysaccharidosis Type VII, Sly Syndro	ome, MPS VII (GUSB Exon 3, German Shep	oherd Variant)	Clear
Mucopolysaccharidosis Type VII, Sly Syndro	ome, MPS VII (GUSB Exon 5, Terrier Brasile	eiro Variant)	Clear
Multiple Drug Sensitivity (ABCB1)			Clear
Muscular Dystrophy (DMD, Cavalier King Ch	arles Spaniel Variant 1)		Clear
O Muscular Dystrophy (DMD, Golden Retrieve	r Variant)		Clear
Musladin-Lueke Syndrome, MLS (ADAMTSL	2)		Clear
Ø Myasthenia Gravis-Like Syndrome (CHRNE,	Heideterrier Variant)		Clear
🔗 Myotonia Congenita (CLCN1 Exon 23, Austr	alian Cattle Dog Variant)		Clear
🔗 Myotonia Congenita (CLCN1 Exon 7, Miniatu	ıre Schnauzer Variant)		Clear
Narcolepsy (HCRTR2 Exon 1, Dachshund Va	riant)		Clear
Narcolepsy (HCRTR2 Intron 4, Doberman Pi	nscher Variant)		Clear
Narcolepsy (HCRTR2 Intron 6, Labrador Ret	riever Variant)		Clear
Nemaline Myopathy (NEB, American Bulldo	g Variant)		Clear
O Neonatal Cerebellar Cortical Degeneration	(SPTBN2, Beagle Variant)		Clear
Neonatal Encephalopathy with Seizures, NI	EWS (ATF2)		Clear
Neonatal Interstitial Lung Disease (LAMP3)			Clear
Neuroaxonal Dystrophy, NAD (VPS11, Rottwo	eiler Variant)		Clear

Registration: Canadian Kennel Club (CKC) JL4175099

DNA Test Report	Test Date: October 11th, 2023	embk.me/chbloomsburybibbitybobbitybo
OTHER RESULTS		
Neuroaxonal Dystrophy, NAD (TECPR2, Spar	nish Water Dog Variant)	Clear
Neuronal Ceroid Lipofuscinosis 1, NCL 1 (PP	T1 Exon 8, Dachshund Variant 1)	Clear
Neuronal Ceroid Lipofuscinosis 10, NCL 10 (CTSD Exon 5, American Bulldog Variant)	Clear
Neuronal Ceroid Lipofuscinosis 2, NCL 2 (TF	PP1 Exon 4, Dachshund Variant 2)	Clear
Neuronal Ceroid Lipofuscinosis 5, NCL 5 (CL	.N5 Exon 4 SNP, Border Collie Variant)	Clear
Neuronal Ceroid Lipofuscinosis 5, NCL 5 (CL	N5 Exon 4 Deletion, Golden Retriever Var	riant) Clear
Neuronal Ceroid Lipofuscinosis 6, NCL 6 (Cl	N6 Exon 7, Australian Shepherd Variant)	Clear
Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CL	N8, Australian Shepherd Variant)	Clear
Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CL	.N8 Exon 2, English Setter Variant)	Clear
Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CL	.N8 Insertion, Saluki Variant)	Clear
 Neuronal Ceroid Lipofuscinosis, Cerebellar , Variant) 	Ataxia, NCL4A (ARSG Exon 2, American St	affordshire Terrier Clear
Oculocutaneous Albinism, OCA (SLC45A2 E	xon 6, Bullmastiff Variant)	Clear
Oculocutaneous Albinism, OCA (SLC45A2, S	Small Breed Variant)	Clear
Oculoskeletal Dysplasia 2 (COL9A2, Samoye	ed Variant)	Clear
Osteochondrodysplasia (SLC13A1, Poodle V	'ariant)	Clear
Osteogenesis Imperfecta (COL1A2, Beagle V	Variant)	Clear
Osteogenesis Imperfecta (SERPINH1, Dachs	shund Variant)	Clear
Osteogenesis Imperfecta (COL1A1, Golden I	Retriever Variant)	Clear

Registration: Canadian Kennel Club (CKC) JL4175099

DNA Test Report	Test Date: October 11th, 2023	embk.me/chbloomsburybibbitybobbityboo
OTHER RESULTS		
P2Y12 Receptor Platelet Disorder (P2Y12)		Clear
🔗 Pachyonychia Congenita (KRT16, Dogue de	Bordeaux Variant)	Clear
Paroxysmal Dyskinesia, PxD (PIGN)		Clear
Persistent Mullerian Duct Syndrome, PMDS	(AMHR2)	Clear
Pituitary Dwarfism (POU1F1 Intron 4, Karelia	n Bear Dog Variant)	Clear
Platelet Factor X Receptor Deficiency, Scott	Syndrome (TMEM16F)	Clear
Polycystic Kidney Disease, PKD (PKD1)		Clear
Pompe's Disease (GAA, Finnish and Swedis	h Lapphund, Lapponian Herder Variant)	Clear
Prekallikrein Deficiency (KLKB1 Exon 8)		Clear
Primary Ciliary Dyskinesia, PCD (NME5, Alas	skan Malamute Variant)	Clear
Primary Ciliary Dyskinesia, PCD (CCDC39 E	kon 3, Old English Sheepdog Variant)	Clear
Primary Hyperoxaluria (AGXT)		Clear
Primary Lens Luxation (ADAMTS17)		Clear
Primary Open Angle Glaucoma (ADAMTS17	Exon 11, Basset Fauve de Bretagne Variar	t) Clear
Primary Open Angle Glaucoma (ADAMTS10	Exon 17, Beagle Variant)	Clear
Primary Open Angle Glaucoma (ADAMTS10	Exon 9, Norwegian Elkhound Variant)	Clear
 Primary Open Angle Glaucoma and Primary Variant) 	Lens Luxation (ADAMTS17 Exon 2, Chines	se Shar-Pei Clear
Progressive Retinal Atrophy (SAG)		Clear

Registration: Canadian Kennel Club (CKC) JL4175099

DNA Test Report	Test Date: October 11th, 2023 embk.m	ne/chbloomsburybibbitybobbitybc
OTHER RESULTS		
Progressive Retinal Atrophy (I	IFT122 Exon 26, Lapponian Herder Variant)	Clear
Progressive Retinal Atrophy, E	Bardet-Biedl Syndrome (BBS2 Exon 11, Shetland Sheepdog Varian	nt) Clear
Progressive Retinal Atrophy, C	CNGA (CNGA1 Exon 9)	Clear
Progressive Retinal Atrophy, c	ord1 (PDE6B, American Staffordshire Terrier Variant)	Clear
Progressive Retinal Atrophy, F	PRA1 (CNGB1)	Clear
Progressive Retinal Atrophy, F	PRA3 (FAM161A)	Clear
Progressive Retinal Atrophy, r	cd1 (PDE6B Exon 21, Irish Setter Variant)	Clear
Progressive Retinal Atrophy, r	cd3 (PDE6A)	Clear
Protein Losing Nephropathy, F	PLN (NPHS1)	Clear
O Pyruvate Dehydrogenase Defi	iciency (PDP1, Spaniel Variant)	Clear
O Pyruvate Kinase Deficiency (P	PKLR Exon 5, Basenji Variant)	Clear
O Pyruvate Kinase Deficiency (P	PKLR Exon 7, Beagle Variant)	Clear
Pyruvate Kinase Deficiency (P	PKLR Exon 10, Terrier Variant)	Clear
Pyruvate Kinase Deficiency (P	PKLR Exon 7, Labrador Retriever Variant)	Clear
Pyruvate Kinase Deficiency (P	PKLR Exon 7, Pug Variant)	Clear
Raine Syndrome (FAM20C)		Clear
Recurrent Inflammatory Pulmo	onary Disease, RIPD (AKNA, Rough Collie Variant)	Clear
Renal Cystadenocarcinoma ar	nd Nodular Dermatofibrosis (FLCN Exon 7)	Clear

Registration: Canadian Kennel Club (CKC) JL4175099

DNA Test Report	Test Date: October 11th, 2023	embk.me/chbloomsburybibbitybobbitybo
OTHER RESULTS		
Retina Dysplasia and/or Optic Nerve Hype	oplasia (SIX6 Exon 1, Golden Retriever Var	iant) Clear
Sensory Neuropathy (FAM134B, Border Co	ollie Variant)	Clear
Severe Combined Immunodeficiency, SCI	D (PRKDC, Terrier Variant)	Clear
Severe Combined Immunodeficiency, SCI	D (RAG1, Wetterhoun Variant)	Clear
Shaking Puppy Syndrome (PLP1, English	Springer Spaniel Variant)	Clear
Shar-Pei Autoinflammatory Disease, SPAI	D, Shar-Pei Fever (MTBP)	Clear
Skeletal Dysplasia 2, SD2 (COL11A2, Labra	ador Retriever Variant)	Clear
Skin Fragility Syndrome (PKP1, Chesapea	ke Bay Retriever Variant)	Clear
Spinocerebellar Ataxia (SCN8A, Alpine Da	achsbracke Variant)	Clear
Spongy Degeneration with Cerebellar Ata	axia 1 (KCNJ10)	Clear
Spongy Degeneration with Cerebellar Ata	ixia 2 (ATP1B2)	Clear
Stargardt Disease (ABCA4 Exon 28, Labra	dor Retriever Variant)	Clear
Succinic Semialdehyde Dehydrogenase	Deficiency (ALDH5A1 Exon 7, Saluki Variant	:) Clear
O Thrombopathia (RASGRP1 Exon 5, Americ	an Eskimo Dog Variant)	Clear
Thrombopathia (RASGRP1 Exon 5, Basset)	Hound Variant)	Clear
🔗 Thrombopathia (RASGRP1 Exon 8, Landse	eer Variant)	Clear
Trapped Neutrophil Syndrome, TNS (VPS1	3B)	Clear
O Ullrich-like Congenital Muscular Dystroph	ny (COL6A3 Exon 10, Labrador Retriever Va	ariant) Clear

Registration: Canadian Kennel Club (CKC) JL4175099

DNA Test Report	Test Date: October 11th, 2023	embk.me/chbloomsburybibbitybobbitybo
OTHER RESULTS		
O Ullrich-like Congenital Muscula	ar Dystrophy (COL6A1 Exon 3, Landseer Variant)	Clear
O Unilateral Deafness and Vestib	oular Syndrome (PTPRQ Exon 39, Doberman Pinscher)) Clear
⊘ Urate Kidney & Bladder Stones	s (SLC2A9)	Clear
🔗 Von Willebrand Disease Type I,	, Type I vWD (VWF)	Clear
O Von Willebrand Disease Type II	I, Type II vWD (VWF, Pointer Variant)	Clear
Von Willebrand Disease Type II	II, Type III vWD (VWF Exon 4, Terrier Variant)	Clear
Von Willebrand Disease Type II	II, Type III vWD (VWF Intron 16, Nederlandse Kooikerh	ondje Variant) Clear
Von Willebrand Disease Type II	II, Type III vWD (VWF Exon 7, Shetland Sheepdog Varia	ant) Clear
X-Linked Hereditary Nephropat	thy, XLHN (COL4A5 Exon 35, Samoyed Variant 2)	Clear
X-Linked Myotubular Myopathy	y (MTM1, Labrador Retriever Variant)	Clear
⊘ X-Linked Progressive Retinal A	strophy 1, XL-PRA1 (RPGR)	Clear
X-linked Severe Combined Imn	nunodeficiency, X-SCID (IL2RG Exon 1, Basset Hound	Variant) Clear
X-linked Severe Combined Imn	nunodeficiency, X-SCID (IL2RG, Corgi Variant)	Clear
Xanthine Urolithiasis (XDH, Mix	ked Breed Variant)	Clear
🔗 β-Mannosidosis (MANBA Exon	16, Mixed-Breed Variant)	Clear
Desistration: Considion Konnel Olub (OKO) II 4	175000	

Registration: Canadian Kennel Club (CKC) JL4175099

DNA Test Report

Test Date: October 11th, 2023

embk.me/chbloomsburybibbitybobbityboo

HEALTH REPORT

Notable result

ALT Activity

CH Bloomsbury Bibbity Bobbity Boo inherited one copy of the variant we tested for Alanine Aminotransferase Activity

Why is this important to your vet?

Cindy has one copy of a variant associated with reduced ALT activity as measured on veterinary blood chemistry panels. Please inform your veterinarian that Cindy has this genotype, as ALT is often used as an indicator of liver health and Cindy is likely to have a lower than average resting ALT activity. As such, an increase in Cindy's ALT activity could be evidence of liver damage, even if it is within normal limits by standard ALT reference ranges.

What is Alanine Aminotransferase Activity?

Alanine aminotransferase (ALT) is a clinical tool that can be used by veterinarians to better monitor liver health. This result is not associated with liver disease. ALT is one of several values veterinarians measure on routine blood work to evaluate the liver. It is a naturally occurring enzyme located in liver cells that helps break down protein. When the liver is damaged or inflamed, ALT is released into the bloodstream.

How vets diagnose this condition

Genetic testing is the only way to provide your veterinarian with this clinical tool.

How this condition is treated

Veterinarians may recommend blood work to establish a baseline ALT value for healthy dogs with one or two copies of this variant.

DNA Test Report

Test Date: October 11th, 2023

embk.me/chbloomsburybibbitybobbityboo

HEALTH REPORT

Notable result

Proportionate Dwarfism

CH Bloomsbury Bibbity Bobbity Boo inherited one copy of the variant we tested for Proportionate Dwarfism

What does this result mean?

This variant should not impact Cindy's health. This variant is inherited in an autosomal recessive manner, meaning that a dog needs two copies of the variant to show signs of this condition. Cindy is unlikely to develop this condition due to this variant because she only has one copy of the variant.

Impact on Breeding

Your dog carries this variant and will pass it on to ~50% of her offspring. You can email breeders@embarkvet.com to discuss with a genetic counselor how the genotype results should be applied to a breeding program.

What is Proportionate Dwarfism?

Embark's data suggests that this variant in the GH1 gene may contribute to a smaller body size. The original publication predicts this is due to a growth hormone (GH) deficiency. However, adult body size is influenced by several different genetic variants. Other changes noted by the publication, including retained baby teeth, persistent puppy-like coats, and low blood sugar have been occasionally reported by owners of dogs with two copies of this variant. These changes may or may not be associated with this variant.

When signs & symptoms develop in affected dogs

Dogs with this variant may never show clinical signs. Smaller stature may be noticeable if the puppy grows at a different rate than littermates without this variant. Low blood sugar is a potential issue common to most toy breeds but could persist beyond four months of age. Retained puppy teeth and puppy-like coats can only be noted at more than six months of age.

How vets diagnose this condition

Clinical history, genetic testing, and laboratory testing can be used to diagnose this form of Proportionate Dwarfism. Further research is needed to determine the full effects of this variant.

How this condition is treated

Our internal data suggests that most dogs with two copies of this variant will not require additional care than other toy breed puppies. If a complication occurs, your veterinarian may recommend various treatments, including correcting blood sugar or extracting retained baby teeth.

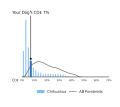
Actions to take if your dog is affected

• Monitor for signs of hypoglycemia, including not eating, lethargy, and inability to stand. Call your veterinarian immediately for advice if you notice these signs.

DNA Test Report

Test Date: October 11th, 2023

embk.me/chbloomsburybibbitybobbityboo


INBREEDING AND DIVERSITY

CATEGORY

Coefficient Of Inbreeding

Our genetic COI measures the proportion of your dog's genome where the genes on the mother's side are identical by descent to those on the father's side.

7%

RESULT

High Diversity

How common is this amount of diversity in purebreds:

High Diversity

How common is this amount of diversity in purebreds:

MHC Class II - DLA DRB1

A Dog Leukocyte Antigen (DLA) gene, DRB1 encodes a major histocompatibility complex (MHC) protein involved in the immune response. Some studies have shown associations between certain DRB1 haplotypes and autoimmune diseases such as Addison's disease (hypoadrenocorticism) in certain dog breeds, but these findings have yet to be scientifically validated.

MHC Class II - DLA DQA1 and DQB1

DQA1 and DQB1 are two tightly linked DLA genes that code for MHC proteins involved in the immune response. A number of studies have shown correlations of DQA-DQB1 haplotypes and certain autoimmune diseases; however, these have not yet been scientifically validated.