

DNA Test Report

Test Date: October 10th, 2023

embk.me/chbloomsburybossanova

BREED ANCESTRY

Chihuahua : 100.0%

GENETIC STATS

Predicted adult weight: **6 lbs** Life stage: **Young adult** Based on your dog's date of birth provided.

TEST DETAILS

Kit number: EM-16137348 Swab number: 31220610203936

"NOVA" CH BLOOMSBURY BOSSA NOVA

DNA Test Report

Test Date: October 10th, 2023

embk.me/chbloomsburybossanova

CHIHUAHUA

The world's smallest breed - the Chihuahua makes up for its lack of size with a huge personality. The origin of this popular breed is largely unknown. While the Chihuahua we recognize today was first discovered in Mexico in the mid 1800s and taking its name from the Mexican city of Chihuahua, the ancestry of this tiny breed is somewhat of a mystery. The most common theory is the Chihuahua descended from an ancient South American dog called the Techichi, with connections to the Toltec civilization followed by the Aztecs. It is thought the Techichi were seen as mystic and spiritual guides that protected souls on their path to the underworld. Following their colorful history, Chihuahuas made their way to America in the late 19th century. This tiny toy dog was first recognized by the AKC in 1904. A notable feature of the Chihuahua breed is their tendency to shake when cold, excited or scared, providing many sweaterloving dog owners the opportunity to dress up their mini pooch. This fun loving and active breed is certainly people orientated, and often seeks a lot of attention. 20-30 minutes of exercise should suffice for this dog's energy requirements. Despite their miniature frame, the Chihuahua is known to be bold and confident. Their protective nature often sees them get aggressive with other dogs, which can cause problems considering they will almost always be out-sized. Their size also makes this affectionate breed often unsuited to small children who may be too rough for them to play with. A healthy Chihuahua can live to around 18 years, so an owner should be prepared to train this energetic breed to ensure they don't control their lives. Chihuahuas are generally easy to train which is highly recommended. This fun loving dog ranks as the 28th most popular breed.

"NOVA"

CH BLOOMSBURY BOSSA NOVA

DNA Test Report

Test Date: October 10th, 2023

embk.me/chbloomsburybossanova

MATERNAL LINE

Through Nova's mitochondrial DNA we can trace her mother's ancestry back to where dogs and people first became friends. This map helps you visualize the routes that her ancestors took to your home. Their story is described below the map.

HAPLOGROUP: A4

The A4 maternal lineage is fairly rare. It is found in Cocker Spaniels, but A4 is also represented well among East Asian breeds including the Chinese Crested Dog, Shar-Pei and Shih Tzu. Moving away from Asia, it is also found among Chihuahuas (a very old breed!) and village dogs in Peru. This may be a lineage that moved into Western breeds because of their owners' tendencies to mix them up with Eastern breeds in the early modern period.

HAPLOTYPE: A210

Part of the small A4 haplogroup, this haplotype occurs most commonly in Chihuahuas and Maltese.

DNA Test Report

Test Date: October 10th, 2023

embk.me/chbloomsburybossanova

TRAITS: COAT COLOR

TRAIT

E Locus (MC1R)

The E Locus determines if and where a dog can produce dark (black or brown) hair. Dogs with two copies of the recessive **e** variant do not produce dark hairs and will express a red pigment called pheomelanin over their entire body. The shade of red, which can range from a deep copper to white, depends on other genetic factors, including the Intensity loci. In addition to determining if a dog can develop dark hairs, the E Locus can give a dog a black "mask" or "widow's peak" unless the dog has overriding coat color genetic factors.

Dogs with one or two copies of the E^m variant may have a melanistic mask (dark facial hair as commonly seen in the German Shepherd Dog and Pug). In the absence of E^m, dogs with the E^g variant can have a "grizzle" phenotype (darker color on the head and top with a melanistic "widow's peak" and a lighter underside, commonly seen in the Afghan Hound and Borzoi and also referred to as "domino"). In the absence of both E^m and E variants, dogs with the E^a or E^h variants can express the grizzle phenotype. Additionally, a dog with any combination of two of the E^g, E^a, or E^h variants (example: E^gE^a) is also expected to express the grizzle phenotype.

K Locus (CBD103)

The K Locus K^B allele "overrides" the A Locus, meaning that it prevents the A Locus genotype from affecting coat color. For this reason, the K^B allele is referred to as the "dominant black" allele. As a result, dogs with at least one K^B allele will usually have solid black or brown coats (or red/cream coats if they are **ee** at the E Locus) regardless of their genotype at the A Locus, although several other genes could impact the dog's coat and cause other patterns, such as white spotting. Dogs with the $k^{y}k^{y}$ genotype will show a coat color pattern based on the genotype they have at the A Locus. Dogs who test as $K^{B}k^{y}$ may be brindle rather than black or brown.

More likely to have a patterned haircoat (k^yk^y)

No dark mask or grizzle (Ee)

RESULT

DNA Test Report

Test Date: October 10th, 2023

embk.me/chbloomsburybossanova

TRAITS: COAT COLOR (CONTINUED)

TRAIT

Intensity Loci

Areas of a dog's coat where dark (black or brown) pigment is not expressed either contain red/yellow pigment, or no pigment at all. Five locations across five chromosomes explain approximately 70% of red pigmentation "intensity" variation across all dogs. Dogs with a result of **Intense Red Pigmentation** will likely have deep red hair like an Irish Setter or "apricot" hair like some Poodles, dogs with a result of **Intermediate Red Pigmentation** will likely have tan or yellow hair like a Soft-Coated Wheaten Terrier, and dogs with **Dilute Red Pigmentation** will likely have cream or white hair like a Samoyed. Because the mutations we test may not directly cause differences in red pigmentation intensity, we consider this to be a linkage test.

Any light hair likely yellow or tan (Intermediate Red Pigmentation)

RESULT

A Locus (ASIP)

The A Locus controls switching between black and red pigment in hair cells, but it will only be expressed in dogs that are not **ee** at the E Locus and are **k**^y**k**^y at the K Locus. Sable (also called "Fawn") dogs have a mostly or entirely red coat with some interspersed black hairs. Agouti (also called "Wolf Sable") dogs have red hairs with black tips, mostly on their head and back. Black and tan dogs are mostly black or brown with lighter patches on their cheeks, eyebrows, chest, and legs. Recessive black dogs have solid-colored black or brown coats.

Fawn Sable coat color pattern (a^ya^t)

D Locus (MLPH)

The D locus result that we report is determined by three different genetic variants that can work together to cause diluted pigmentation. These are the common **d** allele, also known as "**d1**", and the less common alleles known as "**d2**" and "**d3**". Dogs with two **d** alleles, regardless of which variant, will have all black pigment lightened ("diluted") to gray, or brown pigment lightened to lighter brown in their hair, skin, and sometimes eyes. There are many breed-specific names for these dilute colors, such as "blue", "charcoal", "fawn", "silver", and "Isabella". Note that in certain breeds, dilute dogs have a higher incidence of Color Dilution Alopecia. Dogs with one **d** allele will not be dilute, but can pass the **d** allele on to their puppies.

Dark areas of hair and skin are not lightened (DD)

DNA Test Report

Test Date: October 10th, 2023

embk.me/chbloomsburybossanova

TRAITS: COAT COLOR (CONTINUED)

TRAIT RESULT Cocoa (HPS3) Dogs with the coco genotype will produce dark brown pigment instead of black in both their hair and skin. No co alleles, not Dogs with the **Nco** genotype will produce black pigment, but can pass the **co** allele on to their puppies. expressed (NN) Dogs that have the coco genotype as well as the bb genotype at the B locus are generally a lighter brown than dogs that have the **Bb** or **BB** genotypes at the B locus. **B Locus (TYRP1)** Dogs with two copies of the **b** allele produce brown pigment instead of black in both their hair and skin. Black or gray hair and Dogs with one copy of the **b** allele will produce black pigment, but can pass the **b** allele on to their puppies. skin (Bb) E Locus ee dogs that carry two b alleles will have red or cream coats, but have brown noses, eye rims, and footpads (sometimes referred to as "Dudley Nose" in Labrador Retrievers). "Liver" or "chocolate" is the preferred color term for brown in most breeds; in the Doberman Pinscher it is referred to as "red". Saddle Tan (RALY) The "Saddle Tan" pattern causes the black hairs to recede into a "saddle" shape on the back, leaving a tan face, legs, and belly, as a dog ages. The Saddle Tan pattern is characteristic of breeds like the Corgi, Not expressed (NI) Beagle, and German Shepherd. Dogs that have the II genotype at this locus are more likely to be mostly black with tan points on the eyebrows, muzzle, and legs as commonly seen in the Doberman Pinscher and the Rottweiler. This gene modifies the A Locus at allele, so dogs that do not express at are not influenced by this gene.

S Locus (MITF)

The S Locus determines white spotting and pigment distribution. MITF controls where pigment is produced, and an insertion in the MITF gene causes a loss of pigment in the coat and skin, resulting in white hair and/or pink skin. Dogs with two copies of this variant will likely have breed-dependent white patterning, with a nearly white, parti, or piebald coat. Dogs with one copy of this variant will have more limited white spotting and may be considered flash, parti or piebald. This MITF variant does not explain all white spotting patterns in dogs and other variants are currently being researched. Some dogs may have small amounts of white on the paws, chest, face, or tail regardless of their S Locus genotype.

Likely solid colored, but may have small amounts of white (Ssp)

DNA Test Report

Test Date: October 10th, 2023

embk.me/chbloomsburybossanova

RESULT

TRAITS: COAT COLOR (CONTINUED)

TRAIT

M Locus (PMEL)

Merle coat patterning is common to several dog breeds including the Australian Shepherd, Catahoula Leopard Dog, and Shetland Sheepdog, among many others. Merle arises from an unstable SINE insertion (which we term the "M*" allele) that disrupts activity of the pigmentary gene PMEL, leading to mottled or patchy coat color. Dogs with an **M*m** result are likely to be phenotypically merle or could be "nonexpressing" merle, meaning that the merle pattern is very subtle or not at all evident in their coat. Dogs with an **M*M*** result are likely to be phenotypically merle. Dogs with an **mm** result have no merle alleles and are unlikely to have a merle coat pattern.

Note that Embark does not currently distinguish between the recently described cryptic, atypical, atypical+, classic, and harlequin merle alleles. Our merle test only detects the presence, but not the length of the SINE insertion. We do not recommend making breeding decisions on this result alone. Please pursue further testing for allelic distinction prior to breeding decisions.

R Locus (USH2A)

The R Locus regulates the presence or absence of the roan coat color pattern. Partial duplication of the USH2A gene is strongly associated with this coat pattern. Dogs with at least one **R** allele will likely have roaning on otherwise uniformly unpigmented white areas. Roan appears in white areas controlled by the S Locus but not in other white or cream areas created by other loci, such as the E Locus with **ee** along with Dilute Red Pigmentation by I Locus (for example, in Samoyeds). Mechanisms for controlling the extent of roaning are currently unknown, and roaning can appear in a uniform or non-uniform pattern. Further, non-uniform roaning may appear as ticked, and not obviously roan. The roan pattern can appear with or without ticking.

Likely no impact on coat pattern (rr)

No merle alleles (mm)

H Locus (Harlequin)

This pattern is recognized in Great Danes and causes dogs to have a white coat with patches of darker pigment. A dog with an **Hh** result will be harlequin if they are also **M*m** or **M*M*** at the M Locus and are not **ee** at the E locus. Dogs with a result of **hh** will not be harlequin. This trait is thought to be homozygous lethal; a living dog with an **HH** genotype has never been found.

No harlequin alleles (hh)

Registration:

DNA Test Report

Test Date: October 10th, 2023

embk.me/chbloomsburybossanova

TRAITS: OTHER COAT TRAITS

TRAIT

Furnishings (RSPO2)

Dogs with one or two copies of the **F** allele have "furnishings": the mustache, beard, and eyebrows characteristic of breeds like the Schnauzer, Scottish Terrier, and Wire Haired Dachshund. A dog with two **I** alleles will not have furnishings, which is sometimes called an "improper coat" in breeds where furnishings are part of the breed standard. The mutation is a genetic insertion which we measure indirectly using a linkage test highly correlated with the insertion.

Likely unfurnished (no mustache, beard, and/or eyebrows) (II)

RESULT

Registration:

DNA Test Report

Test Date: October 10th, 2023

embk.me/chbloomsburybossanova

TRAITS: OTHER COAT TRAITS (CONTINUED)

TRAIT

Coat Length (FGF5)

The FGF5 gene affects hair length in many species, including cats, dogs, mice, and humans. In dogs, an **Lh** allele confers a long, silky hair coat across many breeds, including Yorkshire Terriers, Cocker Spaniels, and Golden Retrievers, while the **Sh** allele causes a shorter coat, as seen in the Boxer or the American Staffordshire Terrier. In certain breeds, such as the Pembroke Welsh Corgi and French Bulldog, the long haircoat is described as "fluffy". The coat length determined by FGF5, as reported by us, is influenced by four genetic variants that work together to promote long hair.

The most common of these is the **Lh1** variant (G/T, CanFam3.1, chr32, g.4509367) and the less common ones are **Lh2** (C/T, CanFam3.1, chr32, g.4528639), **Lh3** (16bp deletion, CanFam3.1, chr32, g.4528616), and **Lh4** (GG insertion, CanFam3.1, chr32, g.4528621). The FGF5_Lh1 variant is found across many dog breeds. The less common alleles, FGF5_Lh2, have been found in the Akita, Samoyed, and Siberian Husky, FGF5_Lh3 have been found in the Eurasier, and FGF5_Lh4 have been found in the Afghan Hound, Eurasier, and French Bulldog.

The **Lh** alleles have a recessive mode of inheritance, meaning that two copies of the **Lh** alleles are required to have long hair. The presence of two Lh alleles at any of these FGF5 loci is expected to result in long hair. One copy each of **Lh1** and **Lh2** have been found in Samoyeds, one copy each of **Lh1** and **Lh3** have been found in Eurasiers, and one copy each of **Lh1** and **Lh4** have been found in the Afghan Hounds and Eurasiers.

Interestingly, the Lh3 variant, a 16 base pair deletion, encompasses the Lh4 variant (GG insertion). The presence of one or two copies of Lh3 influences the outcome at the Lh4 locus. When two copies of Lh3 are present, there will be no reportable result for the FGF5_Lh4 locus. With one copy of Lh3, Lh4 can have either one copy of the variant allele or the normal allele. The overall FGF5 result remains unaffected by this.

RESULT

Likely long coat (LhLh)

DNA Test Report

Test Date: October 10th, 2023

embk.me/chbloomsburybossanova

TRAITS: OTHER COAT TRAITS (CONTINUED)

TRAIT

Shedding (MC5R)

Dogs with at least one copy of the ancestral **C** allele, like many Labradors and German Shepherd Dogs, are heavy or seasonal shedders, while those with two copies of the **T** allele, including many Boxers, Shih Tzus and Chihuahuas, tend to be lighter shedders. Dogs with furnished/wire-haired coats caused by RSPO2 (the furnishings gene) tend to be low shedders regardless of their genotype at this gene.

Likely heavy/seasonal

RESULT

shedding (CT)

Coat Texture (KRT71)

Dogs with a long coat and at least one copy of the **T** allele have a wavy or curly coat characteristic of Poodles and Bichon Frises. Dogs with two copies of the ancestral **C** allele are likely to have a straight coat, **Likely wavy coat (CT)** but there are other factors that can cause a curly coat, for example if they at least one **F** allele for the Furnishings (RSPO2) gene then they are likely to have a curly coat. Dogs with short coats may carry one or two copies of the **T** allele but still have straight coats.

Hairlessness (FOXI3)

A duplication in the FOXI3 gene causes hairlessness over most of the body as well as changes in tooth shape and number. This mutation occurs in Peruvian Inca Orchid, Xoloitzcuintli (Mexican Hairless), and Chinese Crested (other hairless breeds have different mutations). Dogs with the **NDup** genotype are likely to be hairless while dogs with the **NN** genotype are likely to have a normal coat. The **DupDup** genotype has never been observed, suggesting that dogs with that genotype cannot survive to birth. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

Hairlessness (SGK3)

Hairlessness in the American Hairless Terrier arises from a mutation in the SGK3 gene. Dogs with the **DD** result are likely to be hairless. Dogs with the **ND** genotype will have a normal coat, but can pass the **D** variant on to their offspring.

Very unlikely to be hairless (NN)

DNA Test Report

Test Date: October 10th, 2023

embk.me/chbloomsburybossanova

RESULT

TRAITS: OTHER COAT TRAITS (CONTINUED)

TRAIT

Oculocutaneous Albinism Type 2 (SLC45A2)

Dogs with two copies **DD** of this deletion in the SLC45A2 gene have oculocutaneous albinism (OCA), also known as Doberman Z Factor Albinism, a recessive condition characterized by severely reduced or absent pigment in the eyes, skin, and hair. Affected dogs sometimes suffer from vision problems due to lack of eye pigment (which helps direct and absorb ambient light) and are prone to sunburn. Dogs with a single copy of the deletion **ND** will not be affected but can pass the mutation on to their offspring. This particular mutation can be traced back to a single white Doberman Pinscher born in 1976, and it has only been observed in dogs descended from this individual. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

Registration:

DNA Test Report

Test Date: October 10th, 2023

embk.me/chbloomsburybossanova

TRAITS: OTHER BODY FEATURES

TRAIT

Muzzle Length (BMP3)

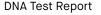
Dogs in medium-length muzzle (mesocephalic) breeds like Staffordshire Terriers and Labradors, and long muzzle (dolichocephalic) breeds like Whippet and Collie have one, or more commonly two, copies of the ancestral **C** allele. Dogs in many short-length muzzle (brachycephalic) breeds such as the English Bulldog, Pug, and Pekingese have two copies of the derived **A** allele. At least five different genes affect muzzle length in dogs, with BMP3 being the only one with a known causal mutation. For example, the skull shape of some breeds, including the dolichocephalic Scottish Terrier or the brachycephalic Japanese Chin, appear to be caused by other genes. Thus, dogs may have short or long muzzles due to other genetic factors that are not yet known to science.

Tail Length (T)

Whereas most dogs have two **C** alleles and a long tail, dogs with one **G** allele are likely to have a bobtail, which is an unusually short or absent tail. This mutation causes natural bobtail in many breeds including the Pembroke Welsh Corgi, the Australian Shepherd, and the Brittany Spaniel. Dogs with **GG** genotypes have not been observed, suggesting that dogs with the **GG** genotype do not survive to birth. Please note that this mutation does not explain every natural bobtail! While certain lineages of Boston Terrier, English Bulldog, Rottweiler, Miniature Schnauzer, Cavalier King Charles Spaniel, and Parson Russell Terrier, and Dobermans are born with a natural bobtail, these breeds do not have this mutation. This suggests that other unknown genetic mutations can also lead to a natural bobtail.

Hind Dewclaws (LMBR1)

Common in certain breeds such as the Saint Bernard, hind dewclaws are extra, nonfunctional digits located midway between a dog's paw and hock. Dogs with at least one copy of the **T** allele have about a 50% chance of having hind dewclaws. Note that other (currently unknown to science) mutations can also cause hind dewclaws, so some **CC** or **TC** dogs will have hind dewclaws.


Likely medium or long muzzle (CC)

RESULT

Likely normal-length tail (CC)

Likely to have hind dew claws (CT)

Test Date: October 10th, 2023

embark

TRAITS: OTHER BODY FEATURES (CONTINUED)

TRAIT

Blue Eye Color (ALX4)

Embark researchers discovered this large duplication associated with blue eyes in Arctic breeds like Siberian Husky as well as tri-colored (non-merle) Australian Shepherds. Dogs with at least one copy of the duplication (**Dup**) are more likely to have at least one blue eye. Some dogs with the duplication may have only one blue eye (complete heterochromia) or may not have blue eyes at all; nevertheless, they can still pass the duplication and the trait to their offspring. **NN** dogs do not carry this duplication, but may have blue eyes due to other factors, such as merle. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

Back Muscling & Bulk, Large Breed (ACSL4)

The **T** allele is associated with heavy muscling along the back and trunk in characteristically "bulky" largebreed dogs including the Saint Bernard, Bernese Mountain Dog, Greater Swiss Mountain Dog, and Rottweiler. The "bulky" **T** allele is absent from leaner shaped large breed dogs like the Great Dane, Irish Wolfhound, and Scottish Deerhound, which are fixed for the ancestral **C** allele. Note that this mutation does not seem to affect muscling in small or even mid-sized dog breeds with notable back muscling, including the American Staffordshire Terrier, Boston Terrier, and the English Bulldog.

Likely normal muscling (CC)

Less likely to have blue

eyes (NN)

RESULT

DNA Test Report	Test Date: October 10th, 2023	embk.me/chbloomsburybossanova
TRAITS: BODY SIZE		
TRAIT		RESULT
Body Size (IGF1)		Smaller (II)
The I allele is associated with smaller body size.		
Body Size (IGFR1)		Larger (GG)
The A allele is associated with smaller body size.		Larger (66)
Body Size (STC2)		Smaller (AA)
The A allele is associated with smaller body size.		Smaller (AA)
Body Size (GHR - E191K)		Smaller (AA)
The A allele is associated with smaller body size.		Sindher (AA)
Body Size (GHR - P177L)		Intermediate (CT)
The T allele is associated with smaller body size.		intermediate (OT)

DNA Test Report	Test Date: October 10th, 2023	embk.me/chbloomsburybossanova
TRAITS: PERFORMANCE		
TRAIT		RESULT
Altitude Adaptation (EPAS1)		
found at high elevations. Dogs with at	cially tolerant of low oxygen environments (hypoxia) least one A allele are less susceptible to "altitude sid reeds from high altitude areas such as the Tibetan Ma	ckness." This tolerance (GG)
Appetite (POMC)		
•	ind primarily in Labrador and Flat Coated Retrievers.	-
•	NN), dogs with one (ND) or two (DD) copies of the mu iich can cause them to eat excessively, have higher b	
	esity. Read more about the genetics of POMC, and lea	-
measure this result using a linkage test	t (https://embarkvet.com/resources/blog/pomc-do	95/). We

DNA Test Report

Test Date: October 10th, 2023

embk.me/chbloomsburybossanova

HEALTH REPORT

How to interpret Nova's genetic health results:

If Nova inherited any of the variants that we tested, they will be listed at the top of the Health Report section, along with a description of how to interpret this result. We also include all of the variants that we tested Nova for that we did not detect the risk variant for.

A genetic test is not a diagnosis

This genetic test does not diagnose a disease. Please talk to your vet about your dog's genetic results, or if you think that your pet may have a health condition or disease.

Summary

Of the 255 genetic health risks we analyzed, we found 1 result that you should learn about.

Notable results (1)

Proportionate Dwarfism

Clear results

Breed-relevant (6)

Other (248)

DNA Test Report

Test Date: October 10th, 2023

embk.me/chbloomsburybossanova

BREED-RELEVANT RESULTS

Research studies indicate that these results are more relevant to dogs like Nova, and may influence her chances of developing certain health conditions.

Congenital Cornification Disorder (NSDHL, Chihuahua Variant)	
Intervertebral Disc Disease (Type I) (FGF4 retrogene - CFA12)	Clear
Neuronal Ceroid Lipofuscinosis 7, NCL 7 (MFSD8, Chihuahua and Chinese Crested Variant)	Clear
Progressive Retinal Atrophy, crd4/cord1 (RPGRIP1)	Clear
Progressive Retinal Atrophy, prcd (PRCD Exon 1)	
Spinocerebellar Ataxia with Myokymia and/or Seizures (KCNJ10)	
Registration: Canadian Kennel Club (CKC) JL4175114	

DNA Test Report

Test Date: October 10th, 2023

embk.me/chbloomsburybossanova

OTHER RESULTS

Research has not yet linked these conditions to dogs with similar breeds to Nova. Review any increased risk or notable results to understand her potential risk and recommendations.

Proportionate Dwarfism (GH1 Exon 5, Chihuahua Variant)	Notable
2-DHA Kidney & Bladder Stones (APRT)	Clear
Acral Mutilation Syndrome (GDNF-AS, Spaniel and Pointer Variant)	Clear
Alaskan Husky Encephalopathy (SLC19A3)	Clear
Alaskan Malamute Polyneuropathy, AMPN (NDRG1 SNP)	Clear
Alexander Disease (GFAP)	Clear
ALT Activity (GPT)	Clear
Anhidrotic Ectodermal Dysplasia (EDA Intron 8)	Clear
Autosomal Dominant Progressive Retinal Atrophy (RHO)	Clear
Bald Thigh Syndrome (IGFBP5)	Clear
Bernard-Soulier Syndrome, BSS (GP9, Cocker Spaniel Variant)	Clear
Bully Whippet Syndrome (MSTN)	Clear
Canine Elliptocytosis (SPTB Exon 30)	Clear
Canine Fucosidosis (FUCA1)	Clear
Canine Leukocyte Adhesion Deficiency Type I, CLAD I (ITGB2, Setter Variant)	Clear
Canine Leukocyte Adhesion Deficiency Type III, CLAD III (FERMT3, German Shepherd Variant)	Clear
Canine Multifocal Retinopathy, cmr1 (BEST1 Exon 2)	Clear
Canine Multifocal Retinopathy, cmr2 (BEST1 Exon 5, Coton de Tulear Variant)	Clear

DNA Test Report	Test Date: October 10th, 2023	embk.me/chbloomsburybossanova
OTHER RESULTS		
 Canine Multifocal Retinopathy, cmr3 (BE Lapponian Herder Variant) 	EST1 Exon 10 Deletion, Finnish and Swedish	Lapphund, Clear
Canine Multiple System Degeneration (SERAC1 Exon 4, Chinese Crested Variant)	Clear
Canine Multiple System Degeneration (SERAC1 Exon 15, Kerry Blue Terrier Variant)	Clear
Cardiomyopathy and Juvenile Mortality	(YARS2)	Clear
Centronuclear Myopathy, CNM (PTPLA)		Clear
Cerebellar Hypoplasia (VLDLR, Eurasier	Variant)	Clear
Chondrodystrophy (ITGA10, Norwegian I	Elkhound and Karelian Bear Dog Variant)	Clear
Cleft Lip and/or Cleft Palate (ADAMTS20), Nova Scotia Duck Tolling Retriever Variant) Clear
Cleft Palate, CP1 (DLX6 intron 2, Nova So	cotia Duck Tolling Retriever Variant)	Clear
Cobalamin Malabsorption (CUBN Exon 8	8, Beagle Variant)	Clear
Cobalamin Malabsorption (CUBN Exon 5	53, Border Collie Variant)	Clear
Collie Eye Anomaly (NHEJ1)		Clear
Complement 3 Deficiency, C3 Deficiency	y (C3)	Clear
Ongenital Hypothyroidism (TPO, Rat, To	oy, Hairless Terrier Variant)	Clear
Ongenital Hypothyroidism (TPO, Tenter	field Terrier Variant)	Clear
Ongenital Hypothyroidism with Goiter ((TPO Intron 13, French Bulldog Variant)	Clear
Congenital Hypothyroidism with Goiter ((SLC5A5, Shih Tzu Variant)	Clear
🔗 Congenital Macrothrombocytopenia (TL	IBB1 Exon 1, Cairn and Norfolk Terrier Varian	t) Clear

Registration: Canadian Kennel Club (CKC) JL4175114

DNA Test Report	Test Date: October 10th, 2023	embk.me/chbloomsburybossanova
OTHER RESULTS		
Congenital Myasthenic Syndrome, CMS	S (COLQ, Labrador Retriever Variant)	Clear
Ongenital Myasthenic Syndrome, CMS	S (COLQ, Golden Retriever Variant)	Clear
🚫 Congenital Myasthenic Syndrome, CMS	S (CHAT, Old Danish Pointing Dog Variant)	Clear
🚫 Congenital Myasthenic Syndrome, CMS	S (CHRNE, Jack Russell Terrier Variant)	Clear
Ongenital Stationary Night Blindness	(LRIT3, Beagle Variant)	Clear
Ongenital Stationary Night Blindness	(RPE65, Briard Variant)	Clear
Craniomandibular Osteopathy, CMO (SI	LC37A2)	Clear
🔗 Craniomandibular Osteopathy, CMO (SI	LC37A2 Intron 16, Basset Hound Variant)	Clear
Cystinuria Type I-A (SLC3A1, Newfound	lland Variant)	Clear
🔗 Cystinuria Type II-A (SLC3A1, Australiar	n Cattle Dog Variant)	Clear
🔗 Cystinuria Type II-B (SLC7A9, Miniature	Pinscher Variant)	Clear
Day Blindness (CNGB3 Deletion, Alaska	an Malamute Variant)	Clear
Oay Blindness (CNGA3 Exon 7, German	Shepherd Variant)	Clear
Day Blindness (CNGA3 Exon 7, Labrador	r Retriever Variant)	Clear
Oay Blindness (CNGB3 Exon 6, German	Shorthaired Pointer Variant)	Clear
O Deafness and Vestibular Syndrome of I	Dobermans, DVDob, DINGS (MYO7A)	Clear
Degenerative Myelopathy, DM (SOD1A)		Clear
Oemyelinating Polyneuropathy (SBF2/I	MTRM13)	Clear

Registration: Canadian Kennel Club (CKC) JL4175114

DNA Test Report	Test Date: October 10th, 2023	embk.me/chbloomsburybossanova
OTHER RESULTS		
Oental-Skeletal-Retinal Anomaly (MI	A3, Cane Corso Variant)	Clear
O Diffuse Cystic Renal Dysplasia and He	epatic Fibrosis (INPP5E Intron 9, Norwich Terrie	er Variant) Clear
Dilated Cardiomyopathy, DCM (RBM2)	0, Schnauzer Variant)	Clear
Dilated Cardiomyopathy, DCM1 (PDK4	I, Doberman Pinscher Variant 1)	Clear
Dilated Cardiomyopathy, DCM2 (TTN,	Doberman Pinscher Variant 2)	Clear
Disproportionate Dwarfism (PRKG2, D	Oogo Argentino Variant)	Clear
Dry Eye Curly Coat Syndrome (FAM83)	3H Exon 5)	Clear
Oystrophic Epidermolysis Bullosa (CC	DL7A1, Central Asian Shepherd Dog Variant)	Clear
Oystrophic Epidermolysis Bullosa (CC	DL7A1, Golden Retriever Variant)	Clear
Early Bilateral Deafness (LOXHD1 Exo	n 38, Rottweiler Variant)	Clear
Sarly Onset Adult Deafness, EOAD (EF	PS8L2 Deletion, Rhodesian Ridgeback Variant)	Clear
Searly Onset Cerebellar Ataxia (SEL1L,	Finnish Hound Variant)	Clear
Ehlers Danlos (ADAMTS2, Doberman	Pinscher Variant)	Clear
Enamel Hypoplasia (ENAM Deletion, I	talian Greyhound Variant)	Clear
🔗 Enamel Hypoplasia (ENAM SNP, Parsc	on Russell Terrier Variant)	Clear
Sepisodic Falling Syndrome (BCAN)		Clear
Exercise-Induced Collapse, EIC (DNN	11)	Clear
Sactor VII Deficiency (F7 Exon 5)		Clear
Desistantian, Orandian Kannal Oluk (OKO) II 4175114	. 🖕	

Registration: Canadian Kennel Club (CKC) JL4175114

DNA Test Report	Test Date: October 10th, 2023	embk.me/chbloomsburybossanova
OTHER RESULTS		
Sactor XI Deficiency (F11 Exon 7, Kerry Blue	Terrier Variant)	Clear
Samilial Nephropathy (COL4A4 Exon 3, Coc	ker Spaniel Variant)	Clear
Samilial Nephropathy (COL4A4 Exon 30, En	glish Springer Spaniel Variant)	Clear
🔗 Fanconi Syndrome (FAN1, Basenji Variant)		Clear
Setal-Onset Neonatal Neuroaxonal Dystrop	hy (MFN2, Giant Schnauzer Variant)	Clear
🚫 Glanzmann's Thrombasthenia Type I (ITGA	2B Exon 13, Great Pyrenees Variant)	Clear
🚫 Glanzmann's Thrombasthenia Type I (ITGA	2B Exon 12, Otterhound Variant)	Clear
Globoid Cell Leukodystrophy, Krabbe disea	se (GALC Exon 5, Terrier Variant)	Clear
Glycogen Storage Disease Type IA, Von Gie	rke Disease, GSD IA (G6PC, Maltese Variant)	Clear
Glycogen Storage Disease Type IIIA, GSD II	IA (AGL, Curly Coated Retriever Variant)	Clear
Glycogen storage disease Type VII, Phosph and English Springer Spaniel Variant)	nofructokinase Deficiency, PFK Deficiency (PFF	KM, Whippet Clear
Glycogen storage disease Type VII, Phosph Wachtelhund Variant)	nofructokinase Deficiency, PFK Deficiency (PFF	KM, Clear
GM1 Gangliosidosis (GLB1 Exon 2, Portugu	ese Water Dog Variant)	Clear
GM1 Gangliosidosis (GLB1 Exon 15, Shiba I	nu Variant)	Clear
🔗 GM1 Gangliosidosis (GLB1 Exon 15, Alaskar	n Husky Variant)	Clear
🔗 GM2 Gangliosidosis (HEXA, Japanese Chin	Variant)	Clear
GM2 Gangliosidosis (HEXB, Poodle Variant)	Clear
Golden Retriever Progressive Retinal Atrop	hy 1, GR-PRA1 (SLC4A3)	Clear

DNA Test Report	Test Date: October 10th, 2023	embk.me/chbloomsburybossanova
OTHER RESULTS		
Golden Retriever Progressive	Retinal Atrophy 2, GR-PRA2 (TTC8)	Clear
Goniodysgenesis and Glauco	ma, Pectinate Ligament Dysplasia, PLD (OLFM3)	Clear
Hemophilia A (F8 Exon 11, Ger	rman Shepherd Variant 1)	Clear
Hemophilia A (F8 Exon 1, Gerr	nan Shepherd Variant 2)	Clear
Hemophilia A (F8 Exon 10, Bo	xer Variant)	Clear
Hemophilia B (F9 Exon 7, Terri	ier Variant)	Clear
Hemophilia B (F9 Exon 7, Rho	desian Ridgeback Variant)	Clear
Hereditary Ataxia, Cerebellar	Degeneration (RAB24, Old English Sheepdog and Gordon	Setter Variant) Clear
Hereditary Cataracts (HSF4 E	xon 9, Australian Shepherd Variant)	Clear
Hereditary Footpad Hyperkera	atosis (FAM83G, Terrier and Kromfohrlander Variant)	Clear
Hereditary Footpad Hyperkera	atosis (DSG1, Rottweiler Variant)	Clear
Hereditary Nasal Parakeratosi	is (SUV39H2 Intron 4, Greyhound Variant)	Clear
Hereditary Nasal Parakeratosi	is, HNPK (SUV39H2)	Clear
Hereditary Vitamin D-Resistan	nt Rickets (VDR)	Clear
Hypocatalasia, Acatalasemia	(CAT)	Clear
Hypomyelination and Tremore	s (FNIP2, Weimaraner Variant)	Clear
Hypophosphatasia (ALPL Exo	n 9, Karelian Bear Dog Variant)	Clear
O Ichthyosis (NIPAL4, American	Bulldog Variant)	Clear
Pedistration: Canadian Kennel Club (CKC) II	A17511A	

Registration: Canadian Kennel Club (CKC) JL4175114

DNA Test Report	Test Date: October 10th, 2023	embk.me/chbloomsburybossanova
OTHER RESULTS		
Ichthyosis (ASPRV1 Exon 2, German Shept	nerd Variant)	Clear
O Ichthyosis (SLC27A4, Great Dane Variant)		Clear
O Ichthyosis, Epidermolytic Hyperkeratosis ((KRT10, Terrier Variant)	Clear
O Ichthyosis, ICH1 (PNPLA1, Golden Retrieve	r Variant)	Clear
Inflammatory Myopathy (SLC25A12)		Clear
Inherited Myopathy of Great Danes (BIN1)		Clear
O Inherited Selected Cobalamin Malabsorpti	ion with Proteinuria (CUBN, Komondor Variant	t) Clear
Intestinal Lipid Malabsorption (ACSL5, Aus	stralian Kelpie)	Clear
Junctional Epidermolysis Bullosa (LAMA3	Exon 66, Australian Cattle Dog Variant)	Clear
Junctional Epidermolysis Bullosa (LAMB3	Exon 11, Australian Shepherd Variant)	Clear
Juvenile Epilepsy (LGI2)		Clear
Juvenile Laryngeal Paralysis and Polyneur	opathy (RAB3GAP1, Rottweiler Variant)	Clear
Juvenile Myoclonic Epilepsy (DIRAS1)		Clear
O L-2-Hydroxyglutaricaciduria, L2HGA (L2HG	DH, Staffordshire Bull Terrier Variant)	Clear
O Lagotto Storage Disease (ATG4D)		Clear
O Laryngeal Paralysis (RAPGEF6, Miniature E	Bull Terrier Variant)	Clear
O Late Onset Spinocerebellar Ataxia (CAPN1)	Clear
Late-Onset Neuronal Ceroid Lipofuscinosi	s, NCL 12 (ATP13A2, Australian Cattle Dog Var	iant) Clear

Registration: Canadian Kennel Club (CKC) JL4175114

DNA Test Report	Test Date: October 10th, 2023	embk.me/chbloomsburybossanova
OTHER RESULTS		
S Leonberger Polyneuropathy 1 (LPN1, ARH	IGEF10)	Clear
Leonberger Polyneuropathy 2 (GJA9)		Clear
C Lethal Acrodermatitis, LAD (MKLN1)		Clear
Leukodystrophy (TSEN54 Exon 5, Standa	rd Schnauzer Variant)	Clear
⊘ Ligneous Membranitis, LM (PLG)		Clear
C Limb Girdle Muscular Dystrophy (SGCD, E	Boston Terrier Variant)	Clear
C Limb-Girdle Muscular Dystrophy 2D (SGC	CA Exon 3, Miniature Dachshund Variant)	Clear
O Long QT Syndrome (KCNQ1)		Clear
Lundehund Syndrome (LEPREL1)		Clear
Macular Corneal Dystrophy, MCD (CHST6	3)	Clear
Malignant Hyperthermia (RYR1)		Clear
May-Hegglin Anomaly (MYH9)		Clear
Methemoglobinemia (CYB5R3, Pit Bull Te	errier Variant)	Clear
Methemoglobinemia (CYB5R3)		Clear
Microphthalmia (RBP4 Exon 2, Soft Coate	ed Wheaten Terrier Variant)	Clear
Mucopolysaccharidosis IIIB, Sanfilippo S	yndrome Type B, MPS IIIB (NAGLU, Schipper	rke Variant) Clear
Mucopolysaccharidosis Type IIIA, Sanfili Variant)	opo Syndrome Type A, MPS IIIA (SGSH Exon	6, Dachshund Clear
 Mucopolysaccharidosis Type IIIA, Sanfilip Huntaway Variant) 	opo Syndrome Type A, MPS IIIA (SGSH Exon	6, New Zealand Clear

Registration: Canadian Kennel Club (CKC) JL4175114

DNA Test Report	Test Date: October 10th, 2023	embk.me/chbloomsburybossanov	va
OTHER RESULTS			
Mucopolysaccharidosis Type VI, Maroteau Variant)	ux-Lamy Syndrome, MPS VI (ARSB Exon 5	, Miniature Pinscher Clear	r
Mucopolysaccharidosis Type VII, Sly Sync	drome, MPS VII (GUSB Exon 3, German She	epherd Variant) Clear	ır
Mucopolysaccharidosis Type VII, Sly Sync	drome, MPS VII (GUSB Exon 5, Terrier Bras	ileiro Variant) Clear	r
Multiple Drug Sensitivity (ABCB1)		Clear	r
Muscular Dystrophy (DMD, Cavalier King C	Charles Spaniel Variant 1)	Clear	r
Muscular Dystrophy (DMD, Golden Retriev	ver Variant)	Clear	r
Musladin-Lueke Syndrome, MLS (ADAMTS	SL2)	Clear	r
Ø Myasthenia Gravis-Like Syndrome (CHRN	E, Heideterrier Variant)	Clear	r
🧭 Myotonia Congenita (CLCN1 Exon 23, Aus	tralian Cattle Dog Variant)	Clear	r
🧭 Myotonia Congenita (CLCN1 Exon 7, Minia	ture Schnauzer Variant)	Clear	r
Narcolepsy (HCRTR2 Exon 1, Dachshund V	Variant)	Clear	r
Narcolepsy (HCRTR2 Intron 4, Doberman	Pinscher Variant)	Clear	r
Narcolepsy (HCRTR2 Intron 6, Labrador R	etriever Variant)	Clear	r
Nemaline Myopathy (NEB, American Bulld	log Variant)	Clear	r
Neonatal Cerebellar Cortical Degeneratio	n (SPTBN2, Beagle Variant)	Clear	r
Neonatal Encephalopathy with Seizures,	NEWS (ATF2)	Clear	r
Neonatal Interstitial Lung Disease (LAMP)	3)	Clear	r
Neuroaxonal Dystrophy, NAD (VPS11, Rott	weiler Variant)	Clear	r

Registration: Canadian Kennel Club (CKC) JL4175114

DNA Test Report	Test Date: October 10th, 2023	embk.me/chbloomsburybossanova
OTHER RESULTS		
Neuroaxonal Dystrophy, NAD (TECPR2, Span	nish Water Dog Variant)	Clear
Neuronal Ceroid Lipofuscinosis 1, NCL 1 (PF	T1 Exon 8, Dachshund Variant 1)	Clear
Neuronal Ceroid Lipofuscinosis 10, NCL 10 (CTSD Exon 5, American Bulldog Variant)	Clear
Neuronal Ceroid Lipofuscinosis 2, NCL 2 (TF	PP1 Exon 4, Dachshund Variant 2)	Clear
Neuronal Ceroid Lipofuscinosis 5, NCL 5 (Cl	LN5 Exon 4 SNP, Border Collie Variant)	Clear
Neuronal Ceroid Lipofuscinosis 5, NCL 5 (Cl	LN5 Exon 4 Deletion, Golden Retriever Variant)) Clear
Neuronal Ceroid Lipofuscinosis 6, NCL 6 (C	LN6 Exon 7, Australian Shepherd Variant)	Clear
Neuronal Ceroid Lipofuscinosis 8, NCL 8 (Cl	LN8, Australian Shepherd Variant)	Clear
Neuronal Ceroid Lipofuscinosis 8, NCL 8 (Cl	LN8 Exon 2, English Setter Variant)	Clear
Neuronal Ceroid Lipofuscinosis 8, NCL 8 (Cl	LN8 Insertion, Saluki Variant)	Clear
 Neuronal Ceroid Lipofuscinosis, Cerebellar Variant) 	Ataxia, NCL4A (ARSG Exon 2, American Staffor	rdshire Terrier Clear
Oculocutaneous Albinism, OCA (SLC45A2 E	xon 6, Bullmastiff Variant)	Clear
Oculocutaneous Albinism, OCA (SLC45A2, S	Small Breed Variant)	Clear
Oculoskeletal Dysplasia 2 (COL9A2, Samoyo	ed Variant)	Clear
Osteochondrodysplasia (SLC13A1, Poodle V	/ariant)	Clear
Osteogenesis Imperfecta (COL1A2, Beagle	Variant)	Clear
Osteogenesis Imperfecta (SERPINH1, Dach	shund Variant)	Clear
Osteogenesis Imperfecta (COL1A1, Golden	Retriever Variant)	Clear

Registration: Canadian Kennel Club (CKC) JL4175114

DNA Test Report	Test Date: October 10th, 2023	embk.me/chbloomsburybossanova
OTHER RESULTS		
P2Y12 Receptor Platelet Disorder (P2Y1	2)	Clear
Pachyonychia Congenita (KRT16, Dogue	e de Bordeaux Variant)	Clear
Paroxysmal Dyskinesia, PxD (PIGN)		Clear
Persistent Mullerian Duct Syndrome, PN	IDS (AMHR2)	Clear
Pituitary Dwarfism (POU1F1 Intron 4, Kar	elian Bear Dog Variant)	Clear
Platelet Factor X Receptor Deficiency, S	cott Syndrome (TMEM16F)	Clear
O Polycystic Kidney Disease, PKD (PKD1)		Clear
Pompe's Disease (GAA, Finnish and Swe	edish Lapphund, Lapponian Herder Variant)	Clear
Prekallikrein Deficiency (KLKB1 Exon 8)		Clear
Primary Ciliary Dyskinesia, PCD (NME5,	Alaskan Malamute Variant)	Clear
Primary Ciliary Dyskinesia, PCD (CCDC3)	9 Exon 3, Old English Sheepdog Variant)	Clear
Primary Hyperoxaluria (AGXT)		Clear
Primary Lens Luxation (ADAMTS17)		Clear
Primary Open Angle Glaucoma (ADAMT)	S17 Exon 11, Basset Fauve de Bretagne Variant)	Clear
Primary Open Angle Glaucoma (ADAMT	S10 Exon 17, Beagle Variant)	Clear
Primary Open Angle Glaucoma (ADAMT	S10 Exon 9, Norwegian Elkhound Variant)	Clear
Primary Open Angle Glaucoma and Prim Variant)	ary Lens Luxation (ADAMTS17 Exon 2, Chinese Sl	har-Pei Clear
Progressive Retinal Atrophy (SAG)		Clear

Registration: Canadian Kennel Club (CKC) JL4175114

DNA Test Report	Test Date: October 10th, 2023	embk.me/chbloomsburybossanova
OTHER RESULTS		
Progressive Retinal Atrophy (IFT122 Exon	26, Lapponian Herder Variant)	Clear
Progressive Retinal Atrophy, Bardet-Biedl	Syndrome (BBS2 Exon 11, Shetland Sheep	odog Variant) Clear
Progressive Retinal Atrophy, CNGA (CNGA	Exon 9)	Clear
Progressive Retinal Atrophy, crd1 (PDE6B,	American Staffordshire Terrier Variant)	Clear
Progressive Retinal Atrophy, PRA1 (CNGB1)	Clear
Progressive Retinal Atrophy, PRA3 (FAM16	1A)	Clear
Progressive Retinal Atrophy, rcd1 (PDE6B	Exon 21, Irish Setter Variant)	Clear
Progressive Retinal Atrophy, rcd3 (PDE6A)		Clear
Protein Losing Nephropathy, PLN (NPHS1)		Clear
Pyruvate Dehydrogenase Deficiency (PDP	1, Spaniel Variant)	Clear
Pyruvate Kinase Deficiency (PKLR Exon 5,	Basenji Variant)	Clear
Pyruvate Kinase Deficiency (PKLR Exon 7, B)	Beagle Variant)	Clear
Pyruvate Kinase Deficiency (PKLR Exon 10	, Terrier Variant)	Clear
Pyruvate Kinase Deficiency (PKLR Exon 7, I	abrador Retriever Variant)	Clear
Pyruvate Kinase Deficiency (PKLR Exon 7, F	Pug Variant)	Clear
Raine Syndrome (FAM20C)		Clear
Recurrent Inflammatory Pulmonary Diseas	e, RIPD (AKNA, Rough Collie Variant)	Clear
Renal Cystadenocarcinoma and Nodular D	ermatofibrosis (FLCN Exon 7)	Clear

Registration: Canadian Kennel Club (CKC) JL4175114

DNA Test Report	Test Date: October 10th, 2023	embk.me/chbloomsburybossanova
OTHER RESULTS		
Retina Dysplasia and/or Optic Nerve Hypo	plasia (SIX6 Exon 1, Golden Retriever Variant)	Clear
Sensory Neuropathy (FAM134B, Border Co	llie Variant)	Clear
Severe Combined Immunodeficiency, SCIE) (PRKDC, Terrier Variant)	Clear
Severe Combined Immunodeficiency, SCIE) (RAG1, Wetterhoun Variant)	Clear
Shaking Puppy Syndrome (PLP1, English S	pringer Spaniel Variant)	Clear
Shar-Pei Autoinflammatory Disease, SPAID), Shar-Pei Fever (MTBP)	Clear
Skeletal Dysplasia 2, SD2 (COL11A2, Labrad	dor Retriever Variant)	Clear
Skin Fragility Syndrome (PKP1, Chesapeak	e Bay Retriever Variant)	Clear
Spinocerebellar Ataxia (SCN8A, Alpine Dad	chsbracke Variant)	Clear
Spongy Degeneration with Cerebellar Ata	kia 1 (KCNJ10)	Clear
Spongy Degeneration with Cerebellar Atax	kia 2 (ATP1B2)	Clear
Stargardt Disease (ABCA4 Exon 28, Labrad	lor Retriever Variant)	Clear
Succinic Semialdehyde Dehydrogenase D	eficiency (ALDH5A1 Exon 7, Saluki Variant)	Clear
O Thrombopathia (RASGRP1 Exon 5, America	n Eskimo Dog Variant)	Clear
O Thrombopathia (RASGRP1 Exon 5, Basset I	Hound Variant)	Clear
O Thrombopathia (RASGRP1 Exon 8, Landsee	er Variant)	Clear
Trapped Neutrophil Syndrome, TNS (VPS13)	3B)	Clear
Illrich-like Congenital Muscular Dystrophy	y (COL6A3 Exon 10, Labrador Retriever Variant)) Clear

Registration: Canadian Kennel Club (CKC) JL4175114

DNA Test Report	Test Date: October 10th, 2023 en	nbk.me/chbloomsburybossanova
OTHER RESULTS		
O Ullrich-like Congenital Musc	cular Dystrophy (COL6A1 Exon 3, Landseer Variant)	Clear
O Unilateral Deafness and Ves	tibular Syndrome (PTPRQ Exon 39, Doberman Pinscher)	Clear
🔗 Urate Kidney & Bladder Ston	nes (SLC2A9)	Clear
⊘ Von Willebrand Disease Type	e I, Type I vWD (VWF)	Clear
⊘ Von Willebrand Disease Type	e II, Type II vWD (VWF, Pointer Variant)	Clear
⊘ Von Willebrand Disease Type	e III, Type III vWD (VWF Exon 4, Terrier Variant)	Clear
🔗 Von Willebrand Disease Type	e III, Type III vWD (VWF Intron 16, Nederlandse Kooikerhondje Varia	ant) Clear
⊘ Von Willebrand Disease Type	e III, Type III vWD (VWF Exon 7, Shetland Sheepdog Variant)	Clear
⊘ X-Linked Hereditary Nephrop	pathy, XLHN (COL4A5 Exon 35, Samoyed Variant 2)	Clear
X-Linked Myotubular Myopa	thy (MTM1, Labrador Retriever Variant)	Clear
⊘ X-Linked Progressive Retina	al Atrophy 1, XL-PRA1 (RPGR)	Clear
X-linked Severe Combined I	mmunodeficiency, X-SCID (IL2RG Exon 1, Basset Hound Variant)	Clear
X-linked Severe Combined I	mmunodeficiency, X-SCID (IL2RG, Corgi Variant)	Clear
🔗 Xanthine Urolithiasis (XDH, N	Mixed Breed Variant)	Clear
🧭 β-Mannosidosis (MANBA Ex	on 16, Mixed-Breed Variant)	Clear

Registration: Canadian Kennel Club (CKC) JL4175114

DNA Test Report

Test Date: October 10th, 2023

embk.me/chbloomsburybossanova

HEALTH REPORT

On the second second

Proportionate Dwarfism

CH Bloomsbury Bossa Nova inherited one copy of the variant we tested for Proportionate Dwarfism

What does this result mean?

This variant should not impact Nova's health. This variant is inherited in an autosomal recessive manner, meaning that a dog needs two copies of the variant to show signs of this condition. Nova is unlikely to develop this condition due to this variant because she only has one copy of the variant.

Impact on Breeding

Your dog carries this variant and will pass it on to ~50% of her offspring. You can email breeders@embarkvet.com to discuss with a genetic counselor how the genotype results should be applied to a breeding program.

What is Proportionate Dwarfism?

Embark's data suggests that this variant in the GH1 gene may contribute to a smaller body size. The original publication predicts this is due to a growth hormone (GH) deficiency. However, adult body size is influenced by several different genetic variants. Other changes noted by the publication, including retained baby teeth, persistent puppy-like coats, and low blood sugar have been occasionally reported by owners of dogs with two copies of this variant. These changes may or may not be associated with this variant.

When signs & symptoms develop in affected dogs

Dogs with this variant may never show clinical signs. Smaller stature may be noticeable if the puppy grows at a different rate than littermates without this variant. Low blood sugar is a potential issue common to most toy breeds but could persist beyond four months of age. Retained puppy teeth and puppy-like coats can only be noted at more than six months of age.

How vets diagnose this condition

Clinical history, genetic testing, and laboratory testing can be used to diagnose this form of Proportionate Dwarfism. Further research is needed to determine the full effects of this variant.

How this condition is treated

Our internal data suggests that most dogs with two copies of this variant will not require additional care than other toy breed puppies. If a complication occurs, your veterinarian may recommend various treatments, including correcting blood sugar or extracting retained baby teeth.

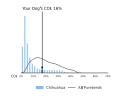
Actions to take if your dog is affected

• Monitor for signs of hypoglycemia, including not eating, lethargy, and inability to stand. Call your veterinarian immediately for advice if you notice these signs.

DNA Test Report

Test Date: October 10th, 2023

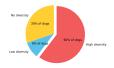
embk.me/chbloomsburybossanova


INBREEDING AND DIVERSITY

CATEGORY

Coefficient Of Inbreeding

Our genetic COI measures the proportion of your dog's genome where the genes on the mother's side are identical by descent to those on the father's side.


16%

RESULT

High Diversity

How common is this amount of diversity in purebreds:

High Diversity

How common is this amount of diversity in purebreds:

MHC Class II - DLA DRB1

A Dog Leukocyte Antigen (DLA) gene, DRB1 encodes a major histocompatibility complex (MHC) protein involved in the immune response. Some studies have shown associations between certain DRB1 haplotypes and autoimmune diseases such as Addison's disease (hypoadrenocorticism) in certain dog breeds, but these findings have yet to be scientifically validated.

MHC Class II - DLA DQA1 and DQB1

DQA1 and DQB1 are two tightly linked DLA genes that code for MHC proteins involved in the immune response. A number of studies have shown correlations of DQA-DQB1 haplotypes and certain autoimmune diseases; however, these have not yet been scientifically validated.